检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续运行”,在弹框中确认继续运行后,
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
到OBS对象存储中长期低成本保存。 图1 基于OBS+SFS Turbo的存储解决方案 OBS + SFS Turbo存储加速的具体方案请查看: 面向AI场景使用OBS+SFS Turbo的存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS Turbo中步骤后,在ModelArts
clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0.28.0 accelerate==0.30.1 timm==0.9.16 准备数据集。 下载K
和/work是同一层级,所以在JupyterLab中看不到。 打开Terminal后,默认为~work目录,执行如下命令进入~data目录查看本地挂载路径: (PyTorch-1.8) [ma-user work]$cd (PyTorch-1.8) [ma-user ~]$cd /data
用户在运营平台选择的折扣信息。 os.modelarts/service.console.url 否 String 订购订单支付完成后跳转的url地址。 os.modelarts/order.id 否 String 订单id,包周期资源创建或者计费模式变更的时候该参数必需。 表5 NodePoolSpec
size 影响流水线并行中设备的计算效率。 切分策略 包括DP(Data Parallel)、TP(Tensor Parallel)、PP(Pipeline Parallel)。 DP:数据并行(Data Parallelism)是大规模深度学习训练中常用的并行模式,它会在每个进程(
在“我的算法”列表,单击算法名称进入详情页,可以查看算法详细信息。 选择“基本信息”页签可以查看算法信息。 “基本信息”页签,单击“编辑”,支持修改除名称和ID之外的算法信息。修改完成,单击“保存”即可完成修改。 选择“训练列表”页签可以查看使用该算法的训练作业信息,例如训练作业名称、状态。
请参见MA-Advisor自动诊断工具使用指导。 Ascend-Insight:对于高阶的调优用户,可以使用可视化profiling数据查看数据详情并分析可优化点。昇腾提供了Ascend-Insight可视化工具,相比于chrometrace等工具提供了更优的功能和性能。详细信
旧版训练中,用户需要在输入输出数据上做如下配置: #解析命令行参数 import argparse parser = argparse.ArgumentParser(description='MindSpore Lenet Example') parser.add_argument('--data_url', type=str
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy as np from
新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。 重装torch等,需要注意选择与上一步版本相匹配的版本。 建议与总结 在创建训练作业前,推荐您先使用Mode
登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池 > 弹性集群 Cluster”,在“弹性集群”页面,选择“Lite资源池”页签,查看资源池列表。 进入资源池详情页,在节点管理页面,选择需要进行驱动升级的节点,单击操作列的“更多 > 驱动升级”。 在“驱动升级”弹窗中,会
视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动TensorBoard Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间 > Notebook”页面,创建T
/home/ma-user/work/code/YOLOX/ && /home/ma-user/anaconda3/envs/pytorch/bin/pip install -r requirements.txt && /bin/sh tools/run.sh 资源池:在“专属资源池”页签选择GPU规格的专属资源池。
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在ModelArts的开发环境中,使用SDK调测单机和多机分布式训练作业。 父主题: 分布式模型训练
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作