检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型训练和服务部署,工作流发布至运行态后,部分运行的开关默认关闭,节点全部运行。用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。 标注质量对于最终的模型精度有极大的影响,标注过程中尽量不要出现误标情况。 音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。 数据上传至OBS 在本文档
在LLM推理应用中,经常会面临具有长system prompt的场景以及多轮对话的场景。长system prompt的场景,system prompt在不同的请求中但是相同的,KV Cache的计算也是相同的;多轮对话场景中,每一轮对话需要依赖所有历史轮次对话的上下文,历史轮次中的KV Cache在后续每一轮中
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
方法二:新建一个文件夹,移动checkpoints文件夹的数据到新建的文件夹下。 执行mkdir xxx命令,新建一个文件夹,例如“xxx”(不要用checkpoints关键字命名) 然后移动checkpoints文件夹的数据到新建的文件夹下,删除根目录下checkpoints文件夹即可。
Prefill(Splitfuse)特性的目的是将长prompt request分解成更小的块,并在多个forward step中进行调度,只有最后一块的forward完成后才开始这个prompt request的生成。将短prompt request组合以精确填充step的空隙,每个step的计算量基本相等,达到所有请求平均延迟更稳定的目的。
Token接口获取(响应消息头中X-Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型 描述 tags 是 Array of TmsTagForDelete objects 要删除的标签列表。 表4 TmsTagForDelete 参数 是否必选
ModelArts平台从对象存储服务(OBS)中导入模型包适用于单模型场景。 如果有多模型复合场景,推荐使用自定义镜像方式,通过从容器镜像(SWR)中选择元模型的方式创建模型部署服务。 制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。 父主题: Standard推理部署
体检测等类型,可在自动学习的数据标注页面,单击“同步数据源”,将OBS中的数据重新同步至ModelArts中。 检查OBS的访问权限 如果OBS桶的访问权限设置无法满足训练要求时,将会出现训练失败。请排查如下几个OBS的权限设置。 当前账号具备OBS桶的读写权限(桶ACLs) 进
出现此问题时,表示数据不满足数据管理模块的要求,导致数据集发布失败,无法执行自动学习的下一步流程。 请根据如下几个要求,检查您的数据,将不符合要求的数据排除后再重新启动自动学习的训练任务。 ModelArts.4710 OBS权限问题 ModelArts在跟OBS交互时,由于权限相关的问题导致。当界面提示“OBS
Gallery”获取他人共享的内容,快速完成构建。在您完成模型的训练和导入之后,您可以将自己的模型分享至“AI Gallery”,进行知识共享。 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击模型的“版本数量”,在展开的版本列表中,单击“操作”列的“发布”进入发布页面。 在发布弹出框中,单击“前往AI
产品优势 ModelArts服务具有以下产品优势。 稳定安全的算力底座,极快至简的模型训练 支持万节点计算集群管理。 大规模分布式训练能力,加速大模型研发。 提供高性价比国产算力。 多年软硬件经验沉淀,AI场景极致优化。 加速套件,训练、推理、数据访问多维度加速。 一站式端到端生产工具链,一致性开发体验
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
t模型实例的全部文件。 功能说明 支持本地文件托管至AI Gallery仓库且支持多个文件同时上传。 单个仓库的容量上限为50GB。 支持管理托管的资产文件,例如在线预览、下载、删除文件。 只支持预览大小不超过10MB、格式为文本类或图片类的文件。 支持编辑资产介绍。每个资产介绍可分为基础设置和使用描述。
Tensorflow和Caffe框架的模型格式转换为MindSpore的模型格式,即模型后缀为.om,使之能在昇腾硬件中进行推理。由于产品演进规划,后续昇腾硬件推理时主要使用后缀为.mindir的模型格式,因此ModelArts下线.om格式的模型转换能力,在ModelArts中逐步增加
下拉框中选择您所需的DWS集群。 数据库名称:根据选择的DWS集群,填写数据所在的数据库名称。 表名称:根据选择的数据库,填写数据所在的表。 用户名:输入DWS集群管理员用户的用户名。 密码:输入DWS集群管理员用户的密码。 从DWS导入数据,需要借助DLI的功能,如果用户没有访
个版本的配置信息,您可以对参数配置进行修改,参数说明请参见创建模型。单击“立即创建”,完成新版本的创建操作。 删除版本 在“模型管理”页面,单击模型的“版本数量”,在展开的版本列表中,单击“操作”列的“删除”,即可删除对应的版本。 如果模型的版本已经部署服务,需先删除关联的服务后