检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1.0.2补丁安装后,需要重新下载安装全量的客户端,包含Master节点的原始客户端和虚拟私有云的其他节点使用的客户端(即您自行搭建的客户端)。 主备Master节点的原始客户端全量更新,请参见更新客户端配置(2.x及之前版本)。 自行搭建的客户端全量安装方法,请参见安装客户端(2
言开发出来的,且Scala语言具有简洁易懂的特性,推荐用户使用Scala语言进行Spark应用程序开发。 按不同的语言分,Spark的API接口如表1所示。 表1 Spark API接口 接口 说明 Scala API 提供Scala语言的API。由于Scala语言的简洁易懂,推荐用户使用Scala接口进行程序开发。
集群中支持同时共存多个ThriftServer服务,通过客户端可以随机连接其中的任意一个服务进行业务操作。即使集群中一个或多个ThriftServer服务停止工作,也不影响用户通过同一个客户端接口连接其他正常的ThriftServer服务。 配置描述 登录Manager,选择“集群 >
Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,
me”的值。 Display参数值: SET parameter_name 此命令用于显示指定的“parameter_name”的值。 Display会话参数: SET 此命令显示所有支持的会话参数。 Display会话参数以及使用细节: SET -v 此命令显示所有支持的会话参数及其使用细节。
安全模式的Flink对接普通模式的Elasticsearch集群需设置参数“es.security.indication”的值为“false” 安全模式的Flink集群支持对接安全模式和普通模式的Elasticsearch集群。 当安全模式的Flink集群对接普通模式的Elasticsearch集群时需设置如下参数:
1.0.3补丁安装后,需要重新下载安装全量的客户端,包含Master节点的原始客户端和虚拟私有云的其他节点使用的客户端(即您自行搭建的客户端)。 主备Master节点的原始客户端全量更新,请参见更新客户端配置(2.x及之前版本)。 自行搭建的客户端全量安装方法,请参见安装客户端(2
资源不足导致的AM启动失败问题。适用于所有ApplicationMaster的全局设置。每个ApplicationMaster都可以使用API设置一个单独的最大尝试次数,但这个次数不能大于全局的最大次数。如果大于了,那ResourceManager将会覆写这个单独的最大尝试次数。
JDBCServer支持多用户多并发接入,但当并发任务数量较高的时候,默认的JDBCServer配置将无法支持,因此需要进行优化来支持该场景。 操作步骤 设置JDBCServer的公平调度策略。 Spark默认使用FIFO(First In First Out)的调度策略,但对于多并发的场景,使用FIFO策略容易导
ebalance的能力,创建任务时指定的task数量会在整个集群中的CDLConnector实例之间做均衡,保证每个实例上运行的task数量大致相同,如果某个CDLConnector实例异常或者节点宕机,该任务会在其它节点重新平衡task的数量。 图1 Task的Rebalance示意图
where_condition]; 删除hive on hbase表中符合条件的数据。详细说明请参见删除Hive on HBase表中的单行记录。 remove table hbase_table1 where id = 1; 删除表中符合条件“id =1”的数据。 CREATE [TEMPORARY] [EXTERNAL]
where_condition]; 删除hive on hbase表中符合条件的数据。详细说明请参见删除Hive on HBase表中的单行记录。 remove table hbase_table1 where id = 1; 删除表中符合条件“id =1”的数据。 CREATE [TEMPORARY] [EXTERNAL]
Yarn是一个分布式的资源管理系统,用于提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原MapRe
Yarn是一个分布式的资源管理系统,用于提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原MapRe
Yarn是一个分布式的资源管理系统,用于提高分布式的集群环境下的资源利用率,这些资源包括内存、IO、网络、磁盘等。其产生的原因是为了解决原MapReduce框架的不足。最初MapReduce的committer还可以周期性的在已有的代码上进行修改,可是随着代码的增加以及原MapRe
threads 10 Broker后台任务处理的线程数目。数据量较大的情况下,可适当调大此参数,以提升Broker处理能力。 num.replica.fetchers 1 副本向Leader请求同步数据的线程数,增大这个数值会增加副本的I/O并发度。 num.io.threads 8
memory.policy”。 配置说明: 配置项的默认值为空,此时不会启动自动调整的策略,ApplicationMaster的内存仍受“yarn.app.mapreduce.am.resource.mb”配置项的影响。 配置参数的值由5个数值组成,中间使用“:”与“,”分隔,格式
配置Container日志目录可以占用每块磁盘上YARN的磁盘配额的最大百分比。当日志目录占用空间超过此设定值时,将触发周期性日志收集服务启动一次周期外的日志收集活动,以释放本地磁盘空间。每个磁盘上可提供给Container logs的最大可使用率。当Container logs使用超过这个限制,会触发滚动汇聚。
应用执行效率的一个重要因素。当一个长期运行的服务(比如JDBCServer),若分配给它多个Executor,可是却没有任何任务分配给它,而此时有其他的应用却资源紧张,这就造成了很大的资源浪费和资源不合理的调度。 动态资源调度就是为了解决这种场景,根据当前应用任务的负载情况,实时
使用REST服务,传入对应host与port组成的url,通过HTTP协议,获取得到所有table。 代码样例 以下代码片段在“hbase-rest-example\src\main\java\com\huawei\hadoop\hbase\examples”包的“HBaseRestTest”类的getAllUserTables方法中。