检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理模型资产、推理资产 查看模型资产与模型推理资产 用户购买盘古大模型套件后,可以在“平台管理 > 资产管理”中查看购买的模型资产和模型推理资产。 图1 查看模型资产 图2 查看模型推理资产 续订模型推理资产 模型推理资产到期后,可以进行续订操作。 在“平台管理 > 资产管理 >
在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 在“概览 > 服务列表”中选择需要调用的模型,并单击操作列的“调用路径”。 图2 服务概览页面 在弹窗中可获取对应模型的API请求地址。其中,路径选中部分即为模型的部署ID(deployment_id)。
模型训练完成后,可以通过迁移(导入模型、导出模型)功能将本局点训练的模型导出,或将其他局点训练的模型导入本局点进行使用。 支持迁移操作的模型可以在“模型开发 > 模型管理 > 我的模型”中查看。 图1 模型管理 导入/导出模型 以从环境A迁移模型到环境B为例: 登录环境B的盘古大模型套件平台,在“模型开发 >
终端节点(endpoint)即API服务的终端地址,通过该地址与API进行通信和交互。获取步骤如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 图2 申请开通服务 在“概览 > 服务列表”中选择需要调用的模型,
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对查看效果。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务操作栏中的“撰写”。 图1 撰写提示词
开启内容审核后,可以有效拦截大模型输入、输出的有害信息,保障模型调用安全。 NLP模型在流式输出时,同样支持内容审核。特别是模型生成超长内容时,通过实时审核模型生成的内容片段,可以有效降低首token的审核时延,同时确保用户看到的内容是经过严格审核的。 图3 大模型内容审核 购买内容审核
提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个e
缘部署,输入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 > 边缘部署”,查看边缘部署列表。 单击“服务名称”可进入服务详情界面。 如果服务部署状态为“部署失败”,可单击服务操作列的“启动”按钮,重新部署。 父主题: 部署为边缘服务
开通盘古大模型服务 调用模型之前,需要先开通盘古大模型服务。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:提供单轮文本能力,常用于文本生成、文本摘要、闭卷问答等任务。 多轮对话:提供多轮文本能力,常用于多轮对话、聊天任务。
检查开发环境要求,确认本地已具备开发环境。 开通盘古大模型API。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 通用文本(文本补全):文本补全接口提供单轮文本能力,常用于文本生成、文本摘要、闭卷问答等任务。 对话问答(
预警,需要优化数据 <40% 红色 告警,需要优化数据 (可选)当“我的数据集”的OBS数据发生变更时,可以单击右上角“检测”按钮重新校验数据集,也可以在“我的数据集”页签中,单击操作栏中的“更多 > 检测”,重新校验数据集。历史存量未校验过的数据集也可以进行重新校验。 图2 重新校验数据集质量1
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
数据量和质量均满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。
型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出,提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词的统一管理。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
任务信息填写完成后,单击“下一步”,搭建数据清洗流程。 可以使用预置的清洗模板完成对数据集的清洗,也可以基于算子搭建清洗流程。 图2 搭建数据清洗流程 将算子拖拽至“输入”、“输出”之间,即可完成清洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3
info查看驱动是否已安装。如果有回显npu卡信息,说明驱动已安装。 详情请参见昇腾官方文档。 hccn too网卡配置。 执行如下命令,查看是否有回显网卡信息。如果有,则说明网卡已经配置,否则继续操作下面步骤。 cat /etc/hccn.conf 执行如下命令,查看npu卡数。
数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码
LoRA轶值 / 8、16、32、64 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 训练轮数 4 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1
评估盘古大模型 创建模型评估数据集 创建模型评估任务 查看评估任务详情