检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
任务不同调整参数target-pipeline-parallel-size,默认为1。 权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
关闭Matmul_all_reduce融合算子的命令: unset USE_MM_ALL_REDUCE_OP 配置后重启推理服务生效。 查看详细日志 查看详细耗时日志可以辅助定位性能瓶颈,但会影响推理性能。如需开启,配置以下环境变量。 export DETAIL_TIME_LOG=1 export
ne-parallel-size,默认为1。 注意:权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等to
depend_steps=[job_step_1, job_step_2] # 依赖的作业类型节点对象 )# job_step是wf.steps.JobStep的 实例对象,train_url是wf.steps.JobOutput的name字段值 workflow = wf
客户创建了多个虚拟环境,numba库安装在了python-3.7.10中,如图1所示。 图1 查询创建的虚拟环境 解决方案 在Terminal中执行conda deactivate命令退出当前虚拟环境,默认进入base环境。执行pip list命令查询已安装的包,然后安装需要的依赖进行保存,最后切换至指定的虚拟环境后再运行脚本。
装。 使用命令jupyter labextension list --app-dir=/home/ma-user/.lab/console查询 前端插件安装目录为:/home/ma-user/.local/share/jupyter/labextensions 后端插件代码安装目录:/home/ma-user/
s您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备> 数据标注”,进入“数据标注”管理页面。 在标注作业列表右侧“所有类型”页签下
就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status 否 Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time 否 Long 更新时间。 worker_id 否 String
数据类型 input_data metric文件的存储对象,当前仅支持JobStep节点的输出 是 JobStep的输出 json_key 需要获取的metric信息对应的key值 是 str 结构内容详解: Condition对象(由三部分组成:条件类型,左值以及右值) 条件类型使
中即可。 大于500MB数据量,请先上传到OBS中,再从OBS上传到云上开发环境。 操作步骤 上传数据至OBS。具体操作请参见上传文件至OBS桶。 或者在本地VS Code的Terminal中使用ModelArts SDK完成数据上传至OBS。首先在本地VS Code中单击上方菜
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
0:打标者 1:审核者 2:团队管理者 3:数据集拥有者 status 否 Integer 标注成员的当前登录状态。可选值如下: 0:未发送邀请邮件 1:已发送邀请邮件但未登录 2:已登录 3:标注成员已删除 update_time 否 Long 更新时间。 worker_id 否 String
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件