检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
及步骤之间的关系进行定义 针对工作流复用,用户可以在开发完成后将流水线固化下来,提供下次或其他人员使用,同时无需关注流水线中包含什么算法或如何实现 图1 Workflow流程 父主题: Standard功能介绍
方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。 conda create --name
json-key 标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
提交DLI Spark作业命令总览 命令 命令详情 get-job 查询DLI Spark作业列表及详情。 get-log 查询DLI Spark运行日志。 get-queue 查询DLI队列。 get-resource 查询DLI分组资源。 stop 停止DLI Spark作业。 submit
注册镜像。登录ModelArts控制台,在左侧导航栏选择“镜像管理”,进入镜像管理页面。单击“注册镜像”,镜像源即为推送到SWR中的镜像。请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册,类型加上“GPU”,如图1所示。 图1 注册镜像 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间
ices_out_cuda_frame failed with error code 0” 训练作业失败,返回错误码139 训练作业失败,如何使用开发环境调试训练代码? 日志提示“ '(slice(0, 13184, None), slice(None, None, None))'
具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
TEXT_TRIPLE (文本三元组) AUDIO_CLASSIFICATION (声音分类) SPEECH_CONTENT (语音内容)SPEECH_SEGMENTATION (语音分割) TABLE (表格数据) VIDEO_ANNOTATION (视频标注) description
将准备好的sshd启动脚本文件上传至OBS的训练代码目录下。 创建自定义镜像训练作业。 “代码目录”选择存有sshd启动脚本文件的OBS地址。 “启动命令”需要适配sshd启动脚本,如下所示: bash ${MA_JOB_DIR}/demo-code/start_sshd.sh
json-key 标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
默认为name。 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 iphertext_enabled 否 Boolean 是否明文展示appsecret。 app_ids
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
用途,可选值为TRAIN、EVAL、TEST、INFERENCE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
图1 续费 查看Lite Cluster资源池基本信息 在ModelArts管理控制台的左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,进入Lite资源池列表页中,单击Lite Cluster资源池名称,可以进入到Lite Cluster资源池详情页中查看更多信息。
验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,需要进一步做精度调优。下文将分别阐述精度诊断的整体思路和如何借助精度工具进行精度问题的定位。 父主题: PyTorch迁移精度调优