检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
空间发起方需要根据基于CCE集群创建联盟链完成空间链的创建过程。 “区块链类型”参数值需要选择“空间链”,否则将影响后续操作。 发起方按照组建联盟链中“邀请成员”部分的描述,邀请参与方加入空间链。 参与方登录区块链服务(BCS)按照组建联盟链中“同意/拒绝邀请”部分的描述,创建BCS实例并加入空间链。
、购买TICS服务、授权IAM用户使用TICS、准备数据、启用区块链审计服务(可选)等一系列准备工作。 本入门示例,是为了演示TICS使用的全流程。组织方在组建空间时,需要至少添加1位合作方。 父主题: 快速入门
接AOM。 计算节点为边缘节点部署时,需要手动在IEF平台对接AOM。 约束限制 对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 计算节点为边缘节点部署时,仅支持1.20.0及以上版本对接AOM,低版本可参考空间升级将空间升级至最新版本。
个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见的场景,TICS能够很方便的支撑联盟和计算节点升级和回滚。回滚也称为回退,即当发现升级出现问题时,让联盟和计算节点自动回滚到
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imb
感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图
管理实例 实例管理是可信智能计算服务提供的一项查看计算节点作业实例的功能。通过实例管理,用户可以查看到该计算节点所有作业的执行实例,并查看作业的状态、计算过程、执行结果。 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”,进入计算节点管理页面。 在“计
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。
审计日志 审计日志页面是可信智能计算服务提供的一项审计数据流动的功能。通过计算节点侧审计页面信息,用户可以清晰地获知空间中的参与方通过该计算节点运行的任务详情。同时,部署计算节点时若开启BCS功能,审计数据会同步至区块链上。 计算节点侧查看审计日志 用户登录TICS控制台。 进入
在申请使用界面配置使用字段及用数方的访问需求。 图2 设置使用的字段及访问的需求 支持选择访问截止时间、访问方式、访问次数。 不设置访问次数时,则不限制访问次数。 单击保存或者保存并提交审批。 在“可信数据交换 > 数据申请 > 我创建的”的页签下可以查看、编辑、删除已创建的申请。 父主题: 可信数据交换
训练轮数 训练的轮数,每一轮训练结束都会对各方训练出的权重进行一次安全聚合。 重试 开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。 开关关闭后,关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。 CPU配额 执行作业使用容器的CPU核数。 内存配额
联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式,允许用户
567c76b1cbaebabe5ef03f7c3017bb5b7”这样的一条数据,查询结果中即会返回企业A所选择的企业B的数据字段。 同时企业A的业务系统后台也可以通过API调用的方式调用企业A计算节点的接口发起实时隐匿查询,更好地服务生产业务。 父主题: 外部数据共享
开发规范 规则 多方安全计算中,基础的sql语法都能够支持,但无法支持所有特殊语法。 语法规则如下: 图1 语法规则 建议及示例 查询示例中两表join场景,建议将大表置于join左侧,小表置于join右侧,可借助初筛的能力,进行小表在大表端的加密过滤,提升性能。 建议示例: Select
将加密的二进制字节内容使用用户上传的密钥和数据的iv字节解密。 用户上传的密钥是指在上传密钥上传的AES密钥。 binary:必填。加密的数据,参数类型为字节数组byte[]类型。 binary:必填。加密时使用的iv信息,参数类型为字节数组byte[]类型。 返回解密后的字节数组。
项目ID可以通过调用IAM服务的查询指定条件下的项目信息API获取,接口为“GET https://{Endpoint}/v3/projects”,其中{Endpoint}为IAM的终端节点,可参考IAM文档获取。 响应示例如下,其中projects下的“id”即为项目ID。当返回
业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。