检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
Token认证 Content-Type application/json X-Auth-Token Token值,参考《API参考》文档“如何调用REST API > 认证鉴权 > Token认证”章节获取Token。 AppCode认证 Content-Type application/json
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的区域默认对应一个项目,这个项目由系统预置
Studio大模型开发平台预置盘古系列预训练大模型,支持快速开发,全程0代码开发,极大降低大模型开发门槛。 功能强,Agent开发“好” Agent开发提供便捷搭建大模型应用功能,并提供功能强大的插件配置,让Agent能力更强,更专业。 统一管,资产管理“全” ModelArts Studio大模型开
使用盘古应用百宝箱生成创意活动方案 场景描述 该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下:
可以通过重试机制解决,在代码里检查返回值,碰到这个并发错误可以延时一小段时间(如2-5s)重试请求;也可以后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 请与技术支持确认,API是否已完成部署。 APIG.0301 Incorrect IAM authentication
单任务中模糊的指示也会取得较好的效果,但对于规则越复杂的任务,越需要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或
步骤1:创建工作流 创建一个新的工作流。 步骤2:配置开始节点 设定工作流的起始点。 步骤3:配置大模型节点 将大模型节点加入工作流,用于处理复杂的自然语言理解或生成任务。 步骤4:配置意图识别节点 配置该节点来分析用户输入,识别其意图,以便后续处理。 步骤5:配置提问器节点 配置一个提问器节点
多轮问答场景的输入(“context”字段)请务必使用“[问题, 回答, 问题, 回答, 问题, ……]”的方式来构造,若您的数据是同一个角色连续多次对话的“多轮问题”,可以将同一个角色的对话采用某个分隔符拼接到一个字符串中。例如: 原始对话示例: A:xxx号话务员为您服务! A:先生您好,有什么可以帮助您的? B:你好,是这样的
增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的宣传文案。”、“你是一个财务分析师,请分析上述财务指标的趋势。” 父主题: 提示词写作进阶技巧
都会被模型单独处理。较大的patch_size意味着模型主干部分的一个网格代表更大范围的区域,但局部的细节信息可能会被忽略,较小的patch_size则相反。需要注意: 数据格式为[int,int,int],第一个值需要大于0小于等于4,第二、三个参数都需要大于1小于等于20。
有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。 传统的AI
具体格式要求详见表1。 表1 预测类数据集格式要求 文件内容 文件格式 文件样例 时序 csv 数据为结构化数据,包含列和行,每一行表示一条数据,每一列表示一个特征,并且必须包含预测目标列,预测目标列要求为连续型数据。 目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命
- 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求:
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。
{"system":"你是一个机智幽默问答助手","context":"你好,请介绍自己","target":"哈哈,你好呀,我是你的聪明助手。"} csv格式:csv文件的第一列对应system,第二三列分别对应context、target。 "你是一个机智幽默问答助手","你好,请介绍自己"
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模
这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss) 高空Loss(深海Loss)是衡量模型在高空层次变量
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权