检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署上线 部署上线失败 父主题: 自动学习
info 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
ModelArts在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端
登录ModelArts控制台,管理控制台,在左侧导航栏中选择“权限管理”,单击“查看权限”,检查是否配置了obs的委托权限。 图1 查看权限 如果检查后已经存在委托,但是仍然无法访问,可以提工单寻求技术支持。 父主题: 服务部署
USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号
x86_64架构的主机,操作系统使用Ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18
部署预测分析服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。
通过AK/SK认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功。部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。用户可以通过AK/SK签名认证方式调用API。 使用AK/SK认证时,您可以通过APIG SDK访问,也可以通过ModelArts
创建模型失败,如何定位和处理问题? 问题定位和处理 创建模型失败有两种场景:创建模型时直接报错或者是调用API报错和创建模型任务下发成功,但最终模型创建失败。 创建模型时直接报错或者是调用API报错。一般都是输入参数不合法导致的。您可以根据提示信息进行排查修改即可。 创建模型任务
Verification successful 安装Gallery CLI配置工具 当Gallery CLI配置工具包下载完成后,进入服务器安装工具。不管是ModelArts Lite云服务,还是本地Windows/Linux等服务器,安装操作都相同。 登录服务器,激活python虚拟环境。 conda
自定义镜像导入模型部署上线调用API报错 部署上线调用API报错,排查项如下: 确认配置文件模型的接口定义中有没有POST方法。 确认配置文件里url是否有定义路径。例如:“/predictions/poetry”(默认为“/”)。 确认API调用中body体中的调用路径是否拼接
# 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。
推理服务部署 准备推理环境 启动推理服务 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912)
有云详情页。 裸金属服务器 Lite Server服务器为一台裸金属服务器,单击链接可跳转至对应弹性裸金属服务器的详情页。 镜像 Lite Server服务器的镜像。 创建时间 Lite Server服务器的创建时间。 更新时间 Lite Server服务器的更新时间。 所属订单
单击模型名称,进入模型详情页面,查看模型详情信息。 部署服务并查看详情 在模型详情页面,单击右上角“部署>在线服务”,进入服务部署页面,模型和版本默认选中,选择合适的“实例规格”(例如CPU:2核 8GB),其他参数可保持默认值,单击“下一步”,跳转至服务列表页,当服务状态变为“运行中”,服务部署成功。 单击服务名
在ModelArts中部署模型时,为什么无法选择Ascend Snt3资源? 由于Ascend Snt3资源有限,当资源售罄后,您在部署上线时,无法选择Ascend Snt3资源(公共资源池)进行推理,即在部署页面中,“Ascend: 1* Snt3 (8GB) | ARM: 3
该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建模型部署服务。 父主题: 服务部署
支持在部署在线服务时开启AppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测