检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
status processes”如何解决? 镜像保存时报错“container size %dG is greater than threshold %dG”如何解决? 保存镜像时报错“too many layers in your image”如何解决? 镜像保存时报错“The container
Hunyuan-DiT基于Lite Server部署适配PyTorch NPU推理指导(6.3.909) 混元DiT,一个基于Diffusion transformer的文本到图像生成模型,此模型具有中英文细粒度理解能力。 方案概览 本方案介绍了在ModelArts Lite S
7.6(PyTorch自带,无需关心) pytorch version : 1.X.X-cu102 CUDA Compatibility如何使用? 当CUDA 10.2与低版本GPU驱动(440.33以下)配合使用时,可能会出现兼容问题,此时需要使用CUDA Compatibi
标签:您可以选择全部标签,或者基于您指定的标签,选中其中一个或多个。 文件名或目录:根据文件名称或者文件存储目录筛选。 标注人:选择执行标注操作的账号名称。 样本属性:表示自动分组生成的属性。只有启用了自动分组任务后才可使用此筛选条件。 数据属性:筛选数据的来源,选择“全部”或“推理”。
Lite Server高危操作一览表 ModelArts Lite Server在日常操作与维护过程中涉及的高危操作,需要严格按照操作指导进行,否则可能会影响业务的正常运行。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。
部署在线服务 部署在线服务包括: 已部署为在线服务的初始化。 部署在线服务predictor。 部署批量服务transformer。 部署服务返回服务对象Predictor,其属性包括服务管理章节下的所有功能。 示例代码 在ModelArts notebook平台,Session
昇腾云服务6.3.905版本说明 本文档主要介绍昇腾云服务6.3.905版本配套的镜像地址、软件包获取方式和支持的特性能力。 配套的基础镜像 镜像地址 获取方式 镜像软件说明 配套关系 PyTorch: 西南-贵阳一 swr.cn-southwest-2.myhuaweicloud
续费概述 续费简介 包年/包月专属资源池到期后会影响ModelArts正常使用。如果您想继续使用,需要在指定的时间内为资源池续费,否则资源会自动释放,数据丢失且不可恢复。 续费操作仅适用于包年/包月专属资源池,按需计费专属资源池不需要续费,只需要保证账户余额充足即可。 专属资源池
n、image_classification。 model_name String 模型名称。 tenant String 模型所属租户的账号id。 model_docs Array of GuideDoc objects 模型文档列表。 owner String 模型所属租户的用户id。
修改在线服务配置 对于已部署的服务,您可以修改服务的基本信息以匹配业务变化,更换模型的版本号,实现服务升级。 您可以通过如下两种方式修改服务的基本信息: 方式一:通过服务管理页面修改服务信息 方式二:通过服务详情页面修改服务信息 前提条件 服务已部署成功,“部署中”的服务不支持修改服务信息进行升级。
建议您前往OBS服务,了解OBS计费详情,创建相应的OBS桶用于存储ModelArts使用的数据。 ModelArts标注完样本集后,如何保证退出后不再产生计费? 标注样本集本身不计费,数据集存储在OBS中,收取OBS的费用。建议您前往OBS控制台,删除存储的数据和OBS桶,即可停止收费。
多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以通过设置环境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。 父主题: 常见问题
Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本 在ModelArts管理控制台,创建一个Notebook实例,镜像选择“TensorFlow-1.13”或“TensorFlow-1
准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题:
准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题:
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
c-2b4de06*****/v1/chat/completions" api_key = "<your_apiKey>" # 把<your_apiKey>替换成已获取的API Key。 # Send request. headers = {
py编写指导请见模型推理代码编写说明)。 确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是否需要使用GPU,取决于的模型需要用到CPU还是GPU,以及推理脚本如何编写。 父主题: 服务部署
测试用户权限 由于权限配置需要等待15-30分钟生效,建议在配置完成后,等待30分钟,再执行如下验证操作。 使用用户组02中任意一个子用户登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。 验证ModelArts权限。
准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题: