检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
译工具(如机器翻译API、大型语言模型等),可以在保证翻译效率的同时,提升翻译质量,并根据实际场景和用户需求进行灵活调整。 本章将详细介绍如何利用不同的节点构建一个高效的多语言文本翻译工作流,并确保不同用户需求(如普通对话、文本翻译)能够被准确识别和处理。 工作流节点设计 选取工
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
提示词候选支持用户对调优后初步筛选的提示词进行候选管理,每个工程任务下可以保存上限9个候选提示词,进一步基于候选提示词进行比较和评估。 提示词比较 提示词比较支持选择两个候选提示词对其文本和参数进行比较,支持对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
性能越好。 ROUGE-1 模型生成句子与实际句子在单个词的相似度,数值越高,表明模型性能越好。 ROUGE-2 模型生成句子与实际句子在两个词的相似度,数值越高,表明模型性能越好。 ROUGE-L 模型生成句子与实际句子在最长公共子序列的相似度,数值越高,表明模型性能越好。 PRECISION
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如何避免因管理不善导致专项资金重大损失浪费?"], "target": "福田区社会建设专项资金使用过程中,如何保障专项资金的使用事项为重点。管理人员应建立责任所在意识,制定科学规范的使用办法,强
请求Body参数 参数 是否必选 参数类型 描述 messages 是 Array of message objects 多轮对话问答对,包含两个属性:role和content。 role表示对话的角色,取值是system或user。 如果需要模型以某个人设形象回答问题,可以将rol
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
计费概述 关于盘古大模型的详细费用信息,敬请咨询华为云售前咨询,我们将为您提供专业的解答和支持。 通过阅读本文,您可以快速了解盘古大模型的计费模式、计费项、续费、欠费等主要计费信息。 计费模式 盘古大模型提供包周期计费、按需计费两种计费模式,以满足不同场景下的用户需求。关于计费模式的详细介绍请参见计费模式。
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
如果在创建视频类数据集标注任务时启用了标注审核功能,则在完成标注后可以在“标注审核”页面审核标注结果。 创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。 审核视频类数据集标注结果的步骤如下: 登录ModelArts
需求选择预置标准或自定义评估标准,从而精确优化数据质量,确保数据满足高标准,提升模型性能。 配比数据集 数据配比是将多个数据集按特定比例组合并发布为“发布数据集”的过程。通过合理的配比,确保数据集的多样性、平衡性和代表性,避免因数据分布不均而引发的问题。 流通数据集 数据流通是将
Token认证 Content-Type application/json X-Auth-Token Token值,参考《API参考》文档“如何调用REST API > 认证鉴权 > Token认证”章节获取Token。 AppCode认证 Content-Type application/json
G文件。每个像素值代表该位置对应的类别信息,类别应是连续的且从0开始。 视频分类 图片 导入为目录,每个数据集目录下有train和test两个目录,目录结构一致,train目录下是多个二级目录,每个二级目录代表相应的类别,例如cls1表示类别1。 单个文件大小不超过50GB,文件数量最多1000个,示例如下所示:
Token认证 Content-Type application/json X-Auth-Token Token值,参考《API参考》文档“如何调用REST API > 认证鉴权 > Token认证”章节获取Token。 AppCode认证 Content-Type application/json
耗时,包括以下三个元素: plugin,插件调用耗时 model,模型调用耗时 overall,总耗时 plugin Object 插件请求信息,包括以下两个元素: name,插件名 arguments,插件入参名 请求示例 流式(Header中的stream参数为true) POST http