检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
220 221 222 223 224 225 from __future__ import print_function import gzip import os import urllib import numpy import tensorflow as tf from six
务器的缓存目录下。 gallery-cli download {repo_id} {文件名} {文件名} 其中,“repo_id”如何获取,文件名如何获取。 如下所示,表示下载文件“config.json”和“merges.txt”到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。
Notebook实例保存为镜像,将准备好的环境保存下来,可以作为自定义镜像,方便后续使用,并且方便进行分享。 保存镜像时,安装的依赖包(pip包)不丢失,VS Code远程开发场景下,在Server端安装的插件不丢失。 亮点特性3:预置镜像 - 即开即用,优化配置,支持主流AI引擎
本文使用NewBert模型介绍构建自定义模型的流程。 安装AI Gallery SDK。 通过pip在本地或云上开发环境安装AI Gallery SDK(galleryformers)。 pip install galleryformers 建议在虚拟环境(Python 3.8+)中安装AI
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
数据处理的创建时间。 data_source ProcessorDataSource object 数据处理任务的输入,与inputs二选一。 description String 数据处理任务描述。 duration_seconds Integer 数据处理的运行时间,单位秒。 error_msg
project_id}/datasets/WxCREuCkBSAlQr9xrde/workforce-tasks/tY330MHxV9dqIPVaTRM/data-annotations/stats?sample_state=__unreviewed__ 响应示例 状态码: 200
VS Code:利用ModelArts插件,实现VS Code远程连接Notebook示例完成远程开发,详情请见使用指导。 下文将介绍如何在ModelArts Standard上使用预置镜像创建Notebook实例。 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间
验证准确度与CPU/GPU差异不符合预期。 在迁移到NPU环境下训练发现以上问题时,说明精度可能存在偏差,需要进一步做精度调优。下文将分别阐述精度诊断的整体思路和如何借助精度工具进行精度问题的定位。 父主题: PyTorch迁移精度调优
String API的认证方式。枚举值如下: NONE:无认证 APP:APP认证 IAM:IAM认证 predict_url String 预测地址。 service_id String 服务编号。 service_name String 服务名称。 support_app_code Boolean
elArts-HuaweiCloud,用户通过简易的操作,实现在本地IDE中进行训练配置、资源监控、作业管理、代码管理等动作。 本章节介绍如何使用VS Code插件创建训练作业并调试。 使用VS Code插件创建训练作业并调试功能目前是白名单,需要提交工单申请开通。 准备工作 创
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
assfication-dataset 本文实验用数据集基于原始数据集处理而来,进行了简单的采样、清晰和prompt工程。 实验数据集获取地址:https://maas-operations.obs.myhuaweicloud.com/Sample-Dataset/maas_demo_news
具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "zero_allow_untested_optimizer": true, "fp16": {
F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
在左上角的服务列表中,选择ModelArts服务,进入ModelArts管理控制台。 在ModelArts管理控制台,可正常创建Notebook、训练作业、注册镜像。 验证SFS权限。 在左上角的服务列表中,选择SFS服务,进入SFS管理控制台。 在SFS管理控制台,在SFS Turbo中单击右上
模型文件大小超过5GB,需要配置“动态加载”。 “运行时依赖” 罗列选中模型对环境的依赖。例如依赖“tensorflow”,安装方式为“pip”,其版本必须为1.8.0及以上版本。 “模型说明” 为了帮助其他模型开发者更好的理解及使用您的模型,建议您提供模型的说明文档。单击“添加
在Lite资源池列表中,单击资源池名称进入资源池详情页面。 在资源池详情页面,单击“标签”页签查看标签信息。 支持添加、修改、删除标签。标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 图3 标签 最多支持添加20个标签。 Lite Cluster资源池配置管理 在资源池详情页面,单击“配置管理