检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建算法”的“代码目录”下放置相应的文件或安装包。 安装python依赖包请参考模型中引用依赖包时,如何创建训练作业? 安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts
显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel, W8A16 per-channel
/home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /hom
/home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /hom
参数名称。 value String 参数值。 description String 参数描述信息。 constraint constraint object 参数属性。 i18n_description i18n_description object 国际化描述。 表12 constraint
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:
ToolKit,协助用户完成SSH远程连接Notebook、代码上传、提交训练作业、将训练日志获取到本地展示等,用户只需要专注于本地的代码开发即可。 本章节介绍如何使用PyCharm ToolKit插件创建训练作业并调试。 前提条件 Step1 下载并安装PyCharm ToolKit。 在本地PyCharm中已有训练代码工程。
essor工具。 SmoothQuant量化模型 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant
权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade
04,建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽) × 多机多卡 按需购买。 (普通OBS桶) 包月购买。 (HPC型500G) 免费。 免费。 包月购买。 免费。 包月购买。 (建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽)
/home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /hom
/home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /hom
/home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /hom
model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4
x.x.zip的llm_tools/ModelNano目录下。 AscendModelNano工具需要安装,执行命令如下。 cd ModelNano # 进入ModelNano工具目录 bash build.sh AscendModelNano # 编译 pip install
问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
图1 Git插件 克隆GitHub的开源代码仓库 GitHub开源仓库地址:https://github.com/jupyterlab/extension-examplesitHub,单击,输入仓库地址,单击确定后即开始克隆,克隆完成后,JupyterLab左侧导航出现代码库文件夹。
问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade