检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
评估分类器 本地上传图片 默认进入“本地上传”页签,根据自身需要选择打开“分类模式”和“动态识别”开关,单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 “分类模式”:打开“分类模式”开关时,单独对分类器的准确度进行评估。上传图片后,右侧会显
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
准备数据 在使用云状识别工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计云状标签 首先需要考虑好云状标签,即希望识别出云状的一种结果。例如可以以“cumulus”(积云)、“stratus”(层云)、“cumulonimbus”(积雨云)等分别作为云状的种类。
准备数据 在使用刹车盘识别工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计刹车盘标签 首先需要考虑好刹车盘的标签类型,即希望识别出图片中刹车盘的一种结果。例如可以以“ventilation”(通风)、“physical”(实体)等分别作为刹车盘的类别。
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。
准备数据 在使用通用图像分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计图像分类标签 首先使用的数据需要考虑好分类的标签类型,即希望识别出图片中的一种结果。例如对天气现象图片进行分类时,标签可以以“snow”(雪)、“rainy”(雨)等作为分类的类别。
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“损失变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
准备数据 在使用安全帽检测技能模板开发技能之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。
准备数据 在使用热轧钢板表面缺陷检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计钢板标签 首先需要考虑好热轧钢板表面缺陷的类型标签,即能识别出热轧钢板表面的缺陷类型。例如以“scratch”、“scar”、“pit”等作为热轧钢板表面缺陷的类型。
准备数据 在使用无监督车牌检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计车牌标签 首先需要考虑好车牌的标签类型,即希望识别出图片中车牌的一种结果。例如“plate”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量
、“分流(%)”、“计算节点规格”和“计算节点个数”。 图4 历史版本 查看调用指南 在“应用监控”页面,您可以查看调用应用API的信息。如何调用API请参考API参考,错误码请参见错误码。 图5 调用指南 父主题: 自然语言处理套件
准备数据 在使用第二相面积含量测定工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 数据标签 标注基于ModelArts的图像分割标注基础能力,由于第二相边界多为不规则形状,目前采用多边形标注第二相,标签为“second_phase”。 数据集要求 文件
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
准备数据 在使用零售商品识别工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计商品标签 首先需要考虑好商品标签,即希望识别出商品的一种结果。例如识别蛋糕店蛋糕的种类,则可以以“cream_cake”、“fruit_cake”、“cheese_cake
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建