检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
量化。 Deepseek-v2系列模型的W8A8量化需要使用llm-compressor工具。 SmoothQuant量化模型 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
常见问题 首次使用ModelArts如何配置授权? 直接选择“新增委托”中的“普通用户”权限即可,普通用户包括用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练作业的创建和管理等。一般用户选择此项即可。 如何获取访问密钥AK/SK? 如果在其他功能(
常见问题 首次使用ModelArts如何配置授权? 直接选择“新增委托”中的“普通用户”权限即可,普通用户包括用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练任务的创建和管理等。一般用户选择此项即可。 如何获取访问密钥AK/SK? 如果在其他功能(
训练创建新的作业。 旧版训练管理是否停止新购? 是的,旧版训练管理将于2023年6月30日 00:00(北京时间)正式退市。 旧版训练管理如何升级到新版训练? 请参考新版训练指导文档(模型训练)来体验新版训练。 旧版训练迁移至新版训练需要注意哪些问题? 新版训练和旧版训练的差异主要体现在以下3点。
Lite的基础功能和用法。 图2 ResNet50模型迁移到Ascend上进行推理 Stable Diffusion模型迁移到Ascend上进行推理:介绍如何将Stable Diffusion模型通过MSLite进行转换后,迁移在昇腾设备上运行。 图3 Stable Diffusion模型迁移到Ascend上进行推理
性能。 LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。 这种方法主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
文件删除后不可恢复,请谨慎操作。 管理数据集可用范围 仅当发布数据集时,“可用范围”启用“申请用户可用”时,才支持管理数据集的可用范围。管理操作包含如何添加可使用资产的新用户、如何审批用户申请使用资产的请求。 添加可使用资产的新用户。 数据集发布成功后,如果数据集所有者要新增可使用资产的新用户,则可以在数据集详情页添加新用户。
OBS桶和Notebook不在同一个区域。请确保读取的OBS桶和Notebook处于同一站点区域,不支持跨站点访问OBS桶。例如:都在华北-北京四站点。具体操作请参见如何查看OBS桶与ModelArts是否在同一区域。 没有该OBS桶的访问权限。请确认操作Notebook的账号有权限读取OBS桶中的数据。具
ow的开发态。当确定好整条流水线后,开发者可以将流水线固化下来,提供给其他人使用。使用者无需关注流水线中包含什么算法,也不需要关注流水线是如何实现的。使用者只需要关注流水线生产出来的模型或者应用是否符合上线要求,如果不符合,是否需要调整数据和参数重新迭代。这种使用固化下来的流水线
otebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模
authentication information: decrypt token fail”。请获取正确的token填入X-Auth-Token,进行预测。如何获取Token请参考获取IAM用户Token。 APIG.1009 AppKey和AppSecret不匹配 当服务预测使用的AppKey和
其可见该资产。 管理模型可用范围 仅当发布模型时,“可用范围”启用“申请用户可用”时,才支持管理模型的可用范围。管理操作包含如何添加可使用资产的新用户、如何审批用户申请使用资产的请求。 添加可使用资产的新用户。 模型发布成功后,如果模型所有者要新增可使用资产的新用户,则可以在模型详情页添加新用户。
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
下。工具相关介绍在benchmark代码目录。 约束限制 当前版本仅支持语言+图片多模态性能测试。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤三:上传代码包和权重文件中已经上传过AscendCloud-LLM-x
署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy as np from
用途,可选值为TRAIN、EVAL、TEST、INFERENCE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
iam:users:listUsers 按用户进行工作空间授权 ModelArts modelarts:*:delete* 删除工作空间时,同时清理空间内的资源 表3 管理开发环境Notebook 业务场景 依赖的服务 依赖策略项 支持的功能 开发环境实例生命周期管理 ModelArts