检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
节点,单击“确定”。 单击“立即创建”,可在资源池列表中查看节点的状态。如果状态为“运行中”,则创建成功。 在主控节点执行如下k8s命令,验证边缘池创建结果: 执行如下命令建立软连接。 ln -s /home/k3s/k3s /usr/bin/kubectl 执行如下命令查看节点状态。
用户可以通过API调用盘古大模型服务的基模型以及用户训练后的模型。训练后的模型只有在使用“在线部署”功能时,才可以使用本章节提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作。 使用Postman调用API 获取API请求地址。
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
本节介绍REST API请求的组成,并以调用IAM服务的获取用户Token接口说明如何调用API,该API获取用户的Token,Token可以用于调用其他API时鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987
在调用盘古API过程中,Token起到了身份验证和权限管理的作用。 在调用盘古API前,需要先使用“获取Token”接口,获取Token值,再将Token值传入盘古API的请求header参数中,实现盘古服务在接收到用户的API请求时进行身份验证。 关于Token有效期的详细说明请参见获取IAM用户Token(使用密码)。
到并复制“X-Subject-Token”参数对应的值,该值即为需要获取的Token。 图4 获取Token 您还可以通过这个视频教程了解如何使用Token认证:https://bbs.huaweicloud.com/videos/101333 。 AK/SK认证 AK/SK签名
如何调用REST API 开通API 构造请求 认证鉴权 返回结果
到了宋朝。他身处一座繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小
盘古大模型支持通过对接内容审核,实现拦截大模型输入、输出的有害信息,保障模型调用安全。用户在开通API后,可依据需求选择是否开通、启用内容审核。 父主题: 如何调用REST API
0301 Incorrect IAM authentication information. IAM身份验证信息不正确: decrypt token fail:token解析失败。 token expires:token过期。 verify aksk signature fail:AK/SK认证失败。
如何调整推理参数,使模型效果最优 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考:
如何判断训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
状态码 HTTP状态码为三位数,分成五个类别:1xx:相关信息;2xx:操作成功;3xx:重定向;4xx:客户端错误;5xx:服务器错误。 状态码如下所示。 状态码 编码 状态说明 100 Continue 继续请求。 这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。
使用java sdk出现json解析报错 图1 json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端
如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面? 如何调整训练参数,使盘古大模型效果最优? 如何判断盘古大模型训练状态是否正常? 为什么微调后的盘古大模型总是重复相同的回答? 盘古大模型是否可以自定义人设? 更多 大模型概念类 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面?
无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
print(embeddings) Splitter 文档拆分解析,提供对文档数据进行拆分解析能力,支持pdf/doc/docx/ppt/pptx/xls/xlsx/png/jpg/jpeg/bmp/gif/tiff/webp/pcx/ico/psd等格式文档。 初始化 根据相应解析接口定义DocSplit类,以使用华为Pangu
边缘服务部署流程 边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于
Splitter用于文档拆分解析,提供对文档数据进行拆分解析能力,支持pdf/doc/docx/ppt/pptx/xls/xlsx/png/jpg/jpeg/bmp/gif/tiff/webp/pcx/ico/psd等格式文档。 初始化:根据相应解析接口定义DocSplit类。以使用华为Pangu