检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 export GLOO_SOCKET_IFNAME=enp67s0f5
委托授权 为了完成AI计算的各种操作,ModelArts在AI计算任务执行过程中需要访问用户的其他服务,例如训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角度出发,ModelArts代表用户访问任何
采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化)数据中,自动学
为了便于用户快速进行迁移调优,降低调优门槛,ModelArts提供了MA-Adivisor性能自动诊断工具。用户采集性能profiling数据后,可通过该工具自动扫描profiling数据,工具分析完数据后会给出可能的性能问题点及调优建议,用户可以根据调优建议做相应的修改适配。目前该工具对CV类模型给出的调优建
只支持预览大小不超过10MB、格式为文本类或图片类的文件。 支持编辑资产介绍。每个资产介绍可分为基础设置和使用描述。 基础设置部分包含了该资产所有重要的结构化元数据信息。选择填入的信息将会变成该模型资产的标签,并且自动同步在模型描述部分,保存到“README.md”文件里。 模型描述部分是一个可在线编
accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM, AutoTokenizer
rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据集名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据集存放于dataset_info.json同目录下。
享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 父主题: 准备工作
在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查:
准备模型代码包和权重文件 将OBS中的模型权重和表1获取的AscendCloud-3rdLLM-6.3.905-xxx.zip代码包上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 export GLOO_SOCKET_IFNAME=enp67s0f5
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
显存溢出错误 在训练过程中,常见显存溢出报错,示例如下: RuntimeError: NPU out of memory. Tried to allocate 1.04 GiB (NPU 4; 60.97 GiB total capacity; 56.45 GiB already
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40
with mox.file.File('obs://bucket_name/obs_file.txt', 'r') as f: data = f.readlines() 利用pandas读或写一个OBS文件 利用pandas读一个OBS文件。 1 2 3 4 import pandas
例请参见train_params.json示例。 “dataset_readme.md” 必选文件,数据集要求说明,定义了模型训练时对数据集的要求,会显示在微调工作流的“准备数据”页面。 “requirements.txt” 非必选文件,环境配置文件,定义了项目依赖的python包。AI
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 图1 网卡名称错误 export GLOO_SOCKET_IFNAME=enp67s0f5