检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件。
如何确认在跨VPC的情况下计算节点与SFS_Turbo文件系统连通性 使用场景 在建立了本端VPC与对端VPC的对等连接之后,用户如何去验证在跨VPC的情况下,本端VPC子网与SFS_Turbo文件系统连通性。 操作前提 在本端VPC与对端VPC之间已经建立了对等连接。 在本端VPC下已经存在了ECS云服务器。
批量预测 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 创建批量预测作业 编辑批量预测作业 执行批量预测作业 删除批量预测作业 父主题: 联邦预测作业
横向联邦学习场景 TICS从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述
企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
(可选步骤)进行特征选择,此步骤要求数据已经对齐,即两方数据集每一行的数据都是一一对应的。 单击数据集按钮切换数据集,勾选特征作为模型训练的指定特征,选择分箱方式后单击“启动分箱和IV计算”,计算得到所选特征对标签的影响程度。计算完成后,单击特征行的可以展开图表形式的分箱woe值。 “FiBiNET”算法新增限制:
在请求什么类型的操作。 表2 HTTP方法 方法 说明 GET 请求服务器返回指定资源。 PUT 请求服务器更新指定资源。 POST 请求服务器新增资源或执行特殊操作。 DELETE 请求服务器删除指定资源,如删除对象等。 HEAD 请求服务器资源头部。 PATCH 请求服务器更新资源的部分内容。
在请求什么类型的操作。 表2 HTTP方法 方法 说明 GET 请求服务器返回指定资源。 PUT 请求服务器更新指定资源。 POST 请求服务器新增资源或执行特殊操作。 DELETE 请求服务器删除指定资源,如删除对象等。 HEAD 请求服务器资源头部。 PATCH 请求服务器更新资源的部分内容。
注册账号并实名认证 账号是您访问华为云的责任主体,有关账号的详细介绍请参见账号中心。此处介绍如何注册一个华为账号。若您已有华为账号,可以略过此部分内容。 打开华为云网站www.huaweicloud.com。 单击页面右上角的“注册”按钮。 在注册页面,根据页面提示完成账号注册。
审批实时隐匿查询作业 前提条件 发起方已创建待审批的作业,参考创建作业。 约束限制 作业审批通过后,才能单击“启动数据初始化”。 审批实时隐匿查询作业 审批方登录进入计算节点页面。 在左侧导航树上选择“审批管理”,打开审批页面。 选择待处理的审批记录,单击“查看详情”。 填写审批意见,单击“同意”。
新建联邦学习作业 功能介绍 新建联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,最大32位,由字母和数字组成
型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测的“样本id”和“模型特征”对应的数值,然后单击“预测”,就会有系统弹窗弹出,显示预测结果。 注意:样本id从创建作业选择数据集的样本id列获取。 图2 发起预测 父主题: 实时预测
联邦学习运行平台枚举值。LOCAL,MODEL_ARTS host_agent_id String 发起方agent id,最大32位,由字母和数字组成 host_agent_name String 发起方可信计算节点名称,最大长度128 boot_file_url String 训练脚本路径,最大长度512
联邦学习运行平台枚举值。LOCAL,MODEL_ARTS host_agent_id 是 String 发起方agent id,最大长度32 host_agent_name 是 String 发起方agent别名,最大长度128 boot_file_url 是 String 训练脚本路径,最大长度512
如何更换计算节点db私钥? 登录到计算节点对应的宿主机。 执行“docker ps -a”命令,查看NAMES为“k8s_db”开头容器的CONTAINER ID,该ID由数字和小写字母组成。 执行“docker exec -it {CONTAINER ID} bash”命令,登
保存纵向联邦作业 功能介绍 保存纵向联邦作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。
组合架构 架构说明 图1 架构图例 作业发起方通过计算节点提供的控制台页面,发起多方安全计算作业。 多方安全计算作业在TICS中进行解析和任务计划构建,并下发任务给各个数据参与方所在的计算节点。 参与方计算节点从租户侧网络内的数据中获取数据,并使用安全算法进行加密输出。 数据在TICS提供的服务器中进行机密计算。
合建模。 已发布区域:北京四、北京二 如何创建横向训练型作业? 如何创建横向评估型作业? 如何创建纵向联邦学习作业? 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 已发布区域:北京四、北京二 如何创建联邦预测作业?
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2