检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
参数 说明 “元模型来源” 选择“从训练中选择”。 在“选择训练作业”右侧下拉框中选择当前账号下已完成运行的训练作业。 “动态加载”:用于实现快速部署和快速更新模型。如果勾选动态加载,则模型文件和运行时依赖仅在实际部署时拉取。当单个模型文件大小超过5GB时,必须配置“动态加载”。
其可见该资产。 管理模型可用范围 仅当发布模型时,“可用范围”启用“申请用户可用”时,才支持管理模型的可用范围。管理操作包含如何添加可使用资产的新用户、如何审批用户申请使用资产的请求。 添加可使用资产的新用户。 模型发布成功后,如果模型所有者要新增可使用资产的新用户,则可以在模型详情页添加新用户。
Lite提供的模型convertor工具可以支持主流的模型格式到MindIR的格式转换,用户需要导出对应的模型文件,推荐导出为ONNX格式。 如何导出ONNX模型 PyTorch转ONNX,操作指导请见此处。 PyTorch导出ONNX模型样例如下: import torch import
authentication information: decrypt token fail”。请获取正确的token填入X-Auth-Token,进行预测。如何获取Token请参考获取IAM用户Token。 APIG.1009 AppKey和AppSecret不匹配 当服务预测使用的AppKey和
自助专属池网络打通:可以在ModelArts管理控制台自行创建和管理专属资源池所属的网络。若需要在专属资源池的任务中访问自己VPC上的资源,可通过“打通VPC”来实现。 更加完善的集群信息:全新改版的专属资源池详情页面中,提供了作业、节点、资源监控等更加全面的集群信息,可帮助您及时了解集群现状,更好的规划使用资源。
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
参见•针对“物体检测”数据集。 相关问题 智能标注失败,如何处理? 当前智能标注为免费使用阶段,当系统的标注任务过多时,因免费资源有限,导致任务失败,请您重新创建智能标注任务或建议您避开高峰期使用。 智能标注时间过长,如何处理? 当前智能标注为免费使用阶段,当系统的标注任务过多时
此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。 登录指令末尾的域名为镜像仓库地址,请记录该地址,后面会使用到。 在安装容器引擎的机器中执行上一步复制的登录指令。 登录成功会显示“Login Succeeded”。
注意:推理应用开发时,需要使用模型的Resize功能,改变输入的shape。而且Resize操作需要在数据从host端复制到device端之前执行,下面是一个简单的示例,展示如何在推理应用时使用动态Shape。 import mindspore_lite as mslite import numpy as np from
用途,可选值为TRAIN、EVAL、TEST、INFERENCE。指明该对象用于训练、评估、测试、推理,如果没有给出该字段,则使用者自行决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id
移Standard专属资源池和网络至其他工作空间将资源池移动到对应的工作空间下。 专属资源池可通过标签来进行管理,具体可参见使用TMS标签实现资源分组管理管理专属资源池标签。 当不再需要使用专属资源池时,您可参考释放Standard专属资源池和删除网络删除专属资源池。 父主题: ModelArts
准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。
cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在ModelArts的开发环境中,使用SDK调测单机和多机分布式训练作业。 父主题: 分布式模型训练
务器的缓存目录下。 gallery-cli download {repo_id} {文件名} {文件名} 其中,“repo_id”如何获取,文件名如何获取。 如下所示,表示下载文件“config.json”和“merges.txt”到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。
GBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示模型的算法实现类型,如果已在模型配置文件中配置,则可不填。如:predict_analysis、object_detection 、image_classification。
ModelArts的大部分权限管理能力均基于统一身份认证服务(Identity and Access Management,简称IAM)来实现,在您继续往下阅读之前,强烈建议您先行熟悉IAM基本概念,如果能完整理解IAM的所有概念,将更加有助于您理解本文档。 为了支持客户对Mod
Cluster的基本使用流程,帮助您快速上手。 图1 资源池架构图 如图所示为Lite Cluster架构图。Lite Cluster基于CCE服务实现对资源节点的管理,因此,用户首先需要购买一个CCE集群。在ModelArts控制台购买Lite Cluster集群时,ModelArts的
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
json文件中配置健康检查的接口,供ModelArts调用,在config.json文件中配置。当业务可提供正常服务时,健康检查接口返回健康状态,否则返回异常状态。 如果要实现无损滚动升级,必须配置健康检查接口。 自定义镜像如果需要在“在线服务”模块使用OBS外部存储挂载功能,需要新建一个OBS挂载专属目录如“/