检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
RES服务根据用户使用的不同资源分别进行收费。 计费支持区域:华北-北京四。 由于RES使用的离线数据需存储在OBS中,数据存储产生的费用,请参见《OBS价格说明》。 表1 推荐系统计费项说明 计费项 说明 存储资源 应用于物品画像和用户画像的存储计费,对用户和物品的总条目数统计进行收费。
品ID的形式在OBS上存储。 操作步骤 登录OBS管理控制台,创建OBS桶。例如,创建名称为“obs-res”的OBS桶。 创建桶的区域需要与RES所在的区域一致。例如:当前RES在华北-北京一区域,在对象存储服务创建桶时,请选择华北-北京一。 通过OBS创建用于存放数据的文件夹
推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,通过拖拽的方式完成配置。具体操作步骤如下:
用户报表:根据不同数据格式展示用户数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。 百分位数:将数据进行排序,统计该数据在整个数据中所占的百分比。 图2 百分位数 分布统计:通过查看分布统计了解各参数下参数值的分布情况。如可以根据性别展示数据中的性别数据分布。可通过查看标签,了解数据中各种标签的分布情况。
本实践针对用户的单次推荐预测请求,在返回的物品列表中,对规定的属性进行打散,避免推荐结果出现同一属性物品扎堆出现的现象。 本实践的基本流程如下: 准备工作 创建数据源 配置在线服务参数 获取推荐结果 准备工作 已注册华为云帐号,并且账号为可用状态。 确保用户选择的属性在物品表存在
在使用RES时需使用到其他的资源,因此需要先开通相关服务才可以正常使用RES。包含服务如下: 开通计算引擎DLI、ModelArts 存储平台CloudTable (可选)数据接入资源DIS 各服务的计费请参见:产品价格详情。 开通计算引擎DLI、ModelArts DLI用于推荐系统的离线计算和
推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可完成对任务状态的监控,并且可以根据任务状态决定是否需要重新执行任务。
RES服务支持按需和购买套餐包,根据用户选择使用的资源进行收费。一个完整的推荐场景需要下面三种资源,均为必选项。套餐的数量可以根据实际业务按需购买。 计算资源:用于推荐作业的计算规格。涉及计费功能包含:数据源、自定义场景、智能场景中的离线计算和模型训练。 存储资源:用于推荐系统数据存储规格。涉及计费功能包括:数据源。
本实践介绍用户在客户端浏览、点击过的某些商品,在规定的时间内,重复请求推荐接口,不会被再次推荐。 功能说明 该功能使用涉及两部分:实时行为数据的接入和在线服务配置行为过滤。当数据源部分开启近线行为实时接入之后,并且用户通过上传实时行为数据,系统才具备根据实时行为进行曝光过滤的功能,该部分可参考上传实时数据进行配置和对接。
“非法条目数”、“重复度”和“合法率”信息。 类型包括生成的用户、物品、行为数据。您可以通过单击左侧的查看具体报告信息。 “名称”项显示具体参数的名称。 “条目数”显示各种类型数据的具体数量。 图1 查看报告 如果导入错误,会生成“数据导入错误报告”,显示数据“类型”、“数量”和“原因”,方便您定位问题原因。
据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。
itemType String 物品的类型。 是 itemId String 对应行为发生的对象的值。如果是和物品发生关系,则是物品的id(itemId)的值。 是 actionType String 行为类型,包括正向行为和负向行为。下面为预置的行为类型和对应的权重,权重有默认分数,默认
“添加推荐候选集”(选择离线或近线任务所生成的推荐候选集进行排序) 任务别名和UUID:单击操作列表的“选择”添加离线或近线的任务名称和候选集ID。 优先级:优先级高的推荐结果将确保展示在优先级低的之前。 同优先级数据占比:优先级相同的推荐候选集,该占比展示推荐数量,同优先级下的数据占比之和需要等于100%。
特征名称:值为时间戳(10位)的特征的名称,任务会根据此特征对候选集进行排序。 推荐天数:推荐数据的时间段,该时间段从当前开始往前推N天,默认15天。 默认热度排序。 候选集最大长度 生成候选集的最大长度,每次计算更新的候选集中的个数不会超过最大值。 默认50。 候选集的召回策略 召回候选集的策略。