检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
插件服务的请求URL地址。 URL协议只支持HTTP和HTTPS。 系统会校验URL地址是否为标准的URL格式。 URL对应的IP默认不应为内网,否则会导致注册失败。仅在非商用环境部署时,才允许支持内网URL,且需要通过相关的服务的启动配置项关闭内网屏蔽。 请求方法 插件服务的请求方式,POST或GET。
高频常见问题 大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面 大模型微调训练类问题 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 数据量足够,为什么盘古大模型微调效果仍然不好
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型超参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您
登录环境B的ModelArts Studio大模型开发平台,在“空间资产 > 模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,下载用户证书。 图1 下载用户证书 登录环境A的ModelArts Studio大模型开发平台,在“空间资产 > 模型 > 本空间”页面,单击支持导出的模型名称,右上角的“导出模型”。
这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTPS的新版本协议。 200 OK 服务器已成功处理了请求。 201 Created 创建类的请求完全成功。 202 Accepted 已经接受请求,但未处理完成。
选择预训练所需的基础模型,可从“已发布模型”或“未发布模型”中进行选择。 高级设置 checkpoints:在模型训练过程中,用于保存模型权重和状态的机制。 关闭:关闭后不保存checkpoints,无法基于checkpoints执行续训操作。 自动:自动保存训练过程中的所有checkpoints。 自
使用盘古应用百宝箱生成创意活动方案 场景描述 该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下:
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
提示词工程类 如何利用提示词提高大模型在难度较高推理任务中的准确率 如何让大模型按指定风格或格式回复 如何分析大模型输出错误回答的根因 为什么其他大模型适用的提示词在盘古大模型上效果不佳 如何判断任务场景应通过调整提示词还是场景微调解决
大模型微调训练类 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
盘古大模型是否可以自定义人设? 如何将本地的数据上传至平台? 导入数据过程中,为什么无法选中OBS的具体文件进行上传? 如何查看预置模型的历史版本? 更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优? 为什么微调后的盘古大模型的回答中会出现乱码? 如何判断盘古大模型训练状态是否正常?
大模型使用类 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的单个文件进行上传 如何查看预置模型的历史版本 训练/推理单元与算力的对应关系是什么
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
节点输入参数中已定义好的参数。 提示词:大模型的系统提示词,用于指导模型更好的完成任务。 记忆:聊天记忆,打开后可记录多轮对话的内容。默认关闭。 图2 大模型节点配置示例 节点配置完成后,单击“确定”。 连接大模型节点和其他节点。 意图识别节点配置说明 意图识别节点通过大模型推理
大模型概念类 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
参数类型 描述 error_msg String 错误信息。 error_code String 错误码。 请求示例 单轮问答 POST https://{endpoint}/v1/{project_id}/deployments/{deployment_id}/chat/completions
盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保护技术说明:https://support.huaweicloud.com
使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如何避免因管理不善导致专项资金重大损失浪费?"], "target": "福田区社会建设专项资金使用过程中,如何保障专项资金的使用事项为重点。管理人员应建立责任所在意识,制定科学规范的使用办法,强