检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点
可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GPU编号。如果未进行添加配置则该编号对应的GPU不可用。 父主题: GPU相关问题
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
撤销审批:单击用户操作列的“撤销”可以取消已审批通过或已拒绝的用户权限,用户的“审批状态”从“已审批”变成“未审批”,或者从“已拒绝”变成“未审批”。 同意用户使用该资产:单击用户操作列的“同意”可以通过用户的申请,用户的“审批状态”从“未审批”变成“已审批”。 拒绝用户使用该资产:单击用户操作列的“拒
mageNet 512×512和256×256的测试中,DiT-XL/2模型实现了2.27的FID值。 下文以Dit模型为例,介绍如何在昇腾设备上如何进行模型迁移,精度及性能调优。 环境准备 迁移环境准备有以下两种方式: 表1 迁移环境准备方式 方式 说明 ModelArts Notebook
save_summary_steps=save_summary_steps, save_model_secs=save_model_secs, checkpoint_path=flags.checkpoint_url, export_model=mox
撤销审批:单击用户操作列的“撤销”可以取消已审批通过或已拒绝的用户权限,用户的“审批状态”从“已审批”变成“未审批”,或者从“已拒绝”变成“未审批”。 同意用户使用该资产:单击用户操作列的“同意”可以通过用户的申请,用户的“审批状态”从“未审批”变成“已审批”。 拒绝用户使用该资产:单击用户操作列的“拒
如何调用API 构造请求 认证鉴权 返回结果
ta ] [ OK ] obs dst path: [ obs://${your_bucket}/test-copy/ ] # 从OBS下载文件夹到本地磁盘中 $ ma-cli obs-copy obs://${your_bucket}/test-copy/ ~/work/test-data/
流程化服务部署和更新、自动化服务运维和监控的实现步骤。 图3 司乘安全算法 将用户本地开发完成的模型,使用自定义镜像构建成ModelArts Standard推理平台可以用的模型。具体操作请参考从0-1制作自定义镜像并创建模型。 在ModelArts管理控制台,使用创建好的模型部署为在线服务。
lArts平台约束)。具体案例参考: 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)
常见问题 首次使用ModelArts如何配置授权? 直接选择“新增委托”中的“普通用户”权限即可,普通用户包括用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练作业的创建和管理等。一般用户选择此项即可。 如何获取访问密钥AK/SK? 如果在其他功能(
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
t, save_path=FLAGS.train_url) 复制数据集到本地 复制数据集到本地主要是为了防止长时间访问OBS容易导致OBS连接中断使得作业卡住,所以一般先将数据复制到本地再进行操作。 数据集复制有两种方式,推荐使用OBS路径复制。 OBS路径(推荐) 直
在指定的训练输出的数据存储位置中保存Checkpoint,且“预下载至本地目录”选择“下载”。选择预下载至本地目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置 PyTorch版reload ckpt PyTorch模型保存有两种方式。
上传完成后,weights/t5-v1_1-xxl/目录下内容如图5所示。 图5 服务器 weights/t5-v1_1-xxl/目录内容 最后weights文件夹下内容目录如图6所示。 图6 服务器weights目录 从weights目录下返回到代码目录下。 cd .. 在/home/ma
创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 常见问题 使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 如果您的原始表格中已包含
推理业务迁移到昇腾的通用流程,可参考GPU推理业务迁移至昇腾的通用指导。 由于Huggingface网站的限制,访问Stable Diffusion链接时需使用代理服务器,否则可能无法访问网站。 在Stable Diffusion迁移适配时,更多的时候是在适配Diffusers和Stable Diffusion
通过重写pandas源码API的方式,将该API改造成支持OBS路径的形式。 写h5到OBS = 写h5到本地缓存 + 上传本地缓存到OBS + 删除本地缓存 从OBS读h5 = 下载h5到本地缓存 + 读取本地缓存 + 删除本地缓存 即将以下代码写在运行脚本的最前面,就能使运行过程中的to_hdf和read_hdf支持OBS路径。