检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
根据输入参数,执行紧密中心度算法。 紧密中心度算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
algorithmName 是 String 算法名字。 parameters 是 parameters Object 算法参数。 表3 parameters 参数 是否必选 类型 说明 statistics 否 Boolean 是否仅输出总的统计量结果,取值为true或false,默认取值为true。
根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
根据输入参数,执行单点环路检测算法。 单点环路检测(single_vertex_circles_detection)意在寻找图中的环路,环路上的点较好地体现了该点的重要性。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
"Amy"],个数不大于100000。 directed 否 Boolean 是否考虑边的方向。取值为true或false。默认取值为false。 说明: 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。
是 String 算法名字。 parameters 是 parameters Object 算法参数。 表3 parameters 参数 是否必选 类型 说明 source 是 String 输入路径的起点ID。 target 是 String 输入路径的终点ID,不等于source。
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点。 URI
是 String 算法名字。 parameters 是 parameters Object 算法参数。 表3 parameters 参数 是否必选 类型 说明 source 是 String 输入路径的起点ID。 target 是 String 输入路径的终点ID,不等于source。
根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。 如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。 如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。
2000],默认值为100。 weight 否 String 边上权重,取值为空或字符串, 当图中的边没有配置该属性时,算法会报错。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 OD_pairs和seeds参数二选一,当OD_pairs和seeds同时输
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_i
"Amy"],个数不大于100000。 directed 否 Boolean 是否考虑边的方向。取值为true或false。默认取值为false。 说明: 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。
是 String 算法名字。 parameters 是 parameters Object 算法参数。 表3 parameters 参数 是否必选 类型 说明 source 是 String 输入路径的起点ID。 target 是 String 输入路径的终点ID,不等于source。
是否带其他约束,取值为true或false,默认取值为true。 false:不带额外约束,即找到的共同邻居为起点集和终点集对应邻域的交集。 true,带额外约束,这里指找到的共同邻居不仅是起点集和终点集邻域的交集,同时共同邻居集合中的每个点都至少有2个以上邻居节点在起点集和终点集中。 响应参数 参数 类型
功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges/v1.0/{project_id}
lse。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。 seeds 否 String 节点ID,输入节点个数不大于100000。 当图较大时,运行betw
00000。 directed 否 Boolean 是否考虑边的方向。取值为true或false,默认值为false。 说明: 当数据集不包含inedge时,若directed=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;当directed=false时,会报错。
d=true,选择一个不依赖于Inedge的算法实现版本计算输出,性能会下降;若directed=false,会报错。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
有实际作用。用户被授予的策略中,一个授权项的作用如果同时存在Allow和Deny,则遵循Deny优先。 如果您给用户授予GES FullAccess的系统策略,但不希望用户拥有GES FullAccess中定义的删除图权限,您可以创建一条拒绝删除独享集群的自定义策略,然后同时将GES