检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
状态码 状态码如表1那所示。 表1 状态码 状态码 编码 状态码说明 100 Continue 继续请求。 这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTP的新版本协议。
Gallery,在报名实践活动或发布AI说时,将跳转至“欢迎入驻AI Gallery”页面。 在“欢迎入驻AI Gallery”页面,填写“昵称”和“邮箱”,并根据提示获取验证码。阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》后,单击“确定”完成入驻。 图1 入驻AI
使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门
使用窍门 创建项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 父主题: 使用自动学习实现零代码AI开发
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
创建预测分析项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
detection, and sound classification)", "unit_en" : "minute" } ] } 状态码 状态码 描述 200 修改工作空间配额成功的响应参数。 错误码 请参见错误码。 父主题: 工作空间管理
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
部署预测分析服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
训练声音分类模型 完成音频标注后,可以进行模型的训练。模型训练的目的是得到满足需求的声音分类模型。由于用于训练的音频,至少有2种以上的分类,每种分类的音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运
训练文本分类模型 完成数据标注后,可进行模型的训练。模型训练的目的是得到满足需求的文本分类模型。由于用于训练的文本,至少有2种以上的分类(即2种以上的标签),每种分类的文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,
创建项目时,如何快速创建OBS桶及文件夹? 在创建项目时需要选择训练数据路径,本章节将指导您如何在选择训练数据路径时,快速创建OBS桶和OBS文件夹。 在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,
None 服务介绍 ModelArts产品 产品介绍 03:19 了解什么是ModelArts ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab