气象类数据集格式要求 ModelArts Studio大模型开发平台支持导入气象类数据集,该数据集当前包括海洋气象数据。 海洋气象数据通常来源于气象再分析。气象再分析是通过现代气象模型和数据同化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特定区域
在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 取值范围:[2, 10]。
气象再分析数据集是利用现代数值天气预报模型和数据同化系统,对过去的观测数据进行重新处理后得到的。这些数据集可以是全球范围的,也可以是特定区域的。再分析数据集的目的是通过整合历史观测数据和现代计算技术,提供一个完整、统一且高质量的气象数据记录,用于研究和分析气候及天气变化。
如:帮我预定会议室、帮我查询天气预报。 在“对话体验 > 追问”中,可选择是否开启“追问”功能,若开启,模型在每轮回复后,默认根据对话内容提供提问建议。 “对话体验”配置完成后,可在右侧“预览调试”中查看当前配置的开场白与推荐问题。
在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 集合成员数 用于选择生成预报的不同初始场的数量,取值为2~10。
创建推理作业 功能介绍 支持调用科学计算大模型创建海洋类模型的推理作业。 URI 获取URI方式请参见请求URI。 请求参数 使用Token认证方式的请求Header参数见表1。 表1 请求Header参数(Token认证) 参数 是否必选 参数类型 描述 X-Auth-Token
ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围
构建微调训练任务 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 在“创建训练任务”页面进行配置。 训练配置:按照图1所示进行配置。 本案例选择的基础模型为“Pangu-AI4S-Ocean_Regional
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人工客服
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业
创建科学计算大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。 表1 科学计算大模型部署参数说明
调用应用 功能介绍 通过调用创建好的应用API,输入问题,将得到应用执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/agents/{agent_id}/conversations/{conversation_id
订购盘古大模型服务 订购模型与资源 ModelArts Studio大模型开发平台支持订购模型资产、数据资源、训练资源、推理资源,支持模型资产的包年/包月订购、资源的包年/包月和按需计费订购。 模型资产:模型资产可用于模型开发、应用开发等模块。当前支持订购NLP大模型、多模态大模型
微调场景介绍 盘古科学计算大模型的区域海洋要素模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。 目前,区域海洋要素模型支持微调、预训练两种操作: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以及区域范围
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型
创建科学计算大模型训练任务 创建科学计算大模型中期天气要素预测微调任务 创建科学计算大模型中期天气要素预测微调任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击右上角“创建训练任务
评估模型效果 训练作业完成后,可以通过平台提供的评估指标评估模型的效果,查看模型指标步骤如下: 使用最终租户登录ModelArts Studio平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”。 单击训练完成的模型,可在“训练结果”页面查看详细的模型效果评估指标
查看科学计算大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
您即将访问非华为云网站,请注意账号财产安全