检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
上传数据至OBS(首次使用时需要) 前提条件 已经在OBS上创建好普通OBS桶,请参见创建普通OBS桶。 已经安装obsutil,请参考下载和安装obsutil。 参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。
创建ModelArts数据校验任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页
创建ModelArts数据选择任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备 > 数据处理”,进入“数据处理”页面。 在“数据处理”
Standard数据准备 在ModelArts数据集中添加图片对图片大小有限制吗? 如何将本地标注的数据导入ModelArts? 在ModelArts中数据标注完成后,标注结果存储在哪里? 在ModelArts中如何将标注结果下载至本地? 在ModelArts中进行团队标注时,为什么团队成员收不到邮件?
更新数据集 功能介绍 修改数据集的基本信息,如数据集名称、描述、当前版本或标签等信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{projec
a.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。
创建ModelArts数据清洗任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页
创建ModelArts数据增强任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在“数据处理”页
训练的数据集预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注作业 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备 > 数据标注”,进入“数据标注”管理页面。
查询数据集详情 查询数据集的详细信息,包括数据集的样本信息、版本信息等。 dataset.get_dataset_info() 示例代码 查询数据集详情 from modelarts.session import Session from modelarts.dataset import
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
在同一区域。 建议根据业务情况及使用习惯,选择OBS使用方法。 如果您的数据量较小(小于100MB)或数据文件少(少于100个),建议您使用控制台上传数据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Bro
Profiling数据采集 在train.py的main()函数Step迭代处添加配置,添加位置如下图所示: 此处需要注意的是prof.step()需要加到dataloder迭代循环的内部以保证采集单个Step迭代的Profiling数据。 更多信息,请参见Ascend PyTorch
创建数据集版本 为数据集创建新的版本。 dataset.create_version(name=None, version_format=None, label_task_type=None, label_task_id=None, **kwargs) 示例代码 示例一:为数据集创建新的版本
从OBS目录导入数据规范说明 导入数据集时,使用存储在OBS的数据时,数据的存储目录以及文件名称需满足ModelArts的规范要求。 当前只有“图像分类”、“物体检测”、“图像分割”、“文本分类”和“声音分类”标注类型支持按标注格式导入。 其中,“表格”类型的数据集,支持从OBS
ta.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
a.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。
a.sh 。 预训练数据集预处理参数说明 预训练数据集预处理脚本 scripts/llama2/1_preprocess_data.sh 中的具体参数如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。