检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AI Gallery使用流程 AI Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
--host:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_len
AI Gallery简介 AI Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
快速配置ModelArts委托授权 场景描述 为了完成AI计算的各种操作,AI平台ModelArts在任务执行过程中需要访问用户的其他服务,典型的就是训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角
订阅Workflow 在AI Gallery中,您可以查找并订阅免费的Workflow。订阅成功的Workflow通过AI Gallery导入后可以直接在ModelArts控制台使用。 AI Gallery中分享的Workflow支持免费订阅,但在使用过程中如果消耗了硬件资源进行
订阅免费算法 在AI Gallery中,您可以查找并订阅免费满足业务需要的算法,直接用于创建训练作业。 AI Gallery中分享的算法支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。
使用ModelArts Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。
使用ModelArts Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。
配置Workflow参数 功能介绍 参数相关的配置使用Placeholder对象来表示,以占位符的形式实现用户数据运行时配置的能力,当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通
--host:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_len
--host:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_len
订阅免费模型 在AI Gallery中,您可以查找并订阅免费的模型,包括ModelArts模型和HiLens技能。订阅成功的模型可以直接用于ModelArts模型部署和HiLens技能安装。 AI Gallery中分享的模型支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,
运行第一条Workflow 了解Workflow的功能与构成后,可通过订阅Workflow的方式尝试运行首条工作流,进一步了解Workflow的运行过程。 数据集准备。 订阅工作流。 运行工作流。 准备数据集 前往AI Gallery,在“资产集市>数据>数据集”页面下载常见生活垃圾图片。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以