检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info
口罩检测 自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。
享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info
之间的float,实际使用的显存是系统读取的最大显存*gpu-memory-utilization。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_leng
A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和标杆的dump数据。 PyTorch训练脚本插入dump接口方式如下: from msprobe.pytorch import PrecisionDebugger
eulerosv2r9.x86_64 架构类型:x86 RDMA:Remote Direct Memory Access(RDMA)是一种直接内存访问技术,将数据直接从一台计算机的内存传输到另一台计算机。 RoCE:RDMA over Converged Ethernet(RoCE)是一种网络协议,允许应用通过以太网实现远程内存访问。
在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI Gallery会基于资产和资源情况分析该任务是否支持设置“商品数量”,用户可以基于业务需要选择任务所需的资源卡数。 在“运行时长控制”选择是否指定运行时长。
不同地区创建云资源,可以将应用程序设计的更接近特定客户的要求,或满足不同地区的法律或其他要求。 可用区 一个可用区(AZ)是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。
运行的作业可以访问打通网络中的存储和资源。例如,在创建训练作业时选择打通了网络的专属资源池,训练作业创建成功后,支持在训练时访问SFS中的数据。 专属资源池支持自定义物理节点运行环境相关的能力,例如GPU/Ascend驱动的自助升级,而公共资源池暂不支持。 专属资源池有什么能力?
通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和GPU的dump数据。 PyTorch训练脚本插入dump接口方式如下: from msprobe.pytorch import PrecisionDebugger
A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
l-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。使用不同的dtype会影响模型精度。如果使用开源权重,建议不指定
Integer 不分页的情况下,符合查询条件的总模型数量。 count Integer 模型数量。 models model结构数组 模型元数据信息。 表3 model结构 参数 参数类型 描述 model_id String 模型ID。 model_name String 模型名称。
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val