检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
VS Code连接远端Notebook时报错“XHR failed” 问题现象 VS Code连接远端Notebook时报错“XHR failed”。 原因分析 可能是所在环境的网络有问题,无法自动下载VS Code Server,请手动安装。 解决方法 打开VS Code,选择
Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx 问题现象 在Notebook中安装依赖包时报错,报错截图如下: 原因分析 pypi源没有这个包或源不可用。 解决方案 使用别的源下载。 pip install -i 源地址
SD WebUI推理方案概览 本文档主要介绍如何在ModelArts的DevServer和ModelArts Standard环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 约束限制 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
SD1.5&SDXL Koyha框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 父主题: 文生图模型训练推理
迁移环境准备 迁移环境准备有以下两种方式: 表1 方式说明 序号 名称 说明 方式一 ModelArts Notebook 该环境为在线调试环境,主要面向演示、体验和快速原型调试场景。 优点:可快速、低成本地搭建环境,使用标准化容器镜像,官方Notebook示例可直接运行。 缺点
被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 获取AK/SK 如果已生成过AK/SK,则可跳过此步骤,找到原来已下载的AK/SK文件,文件名一般为:credentials.csv。 如下图所示,文件包含了租户名(User Name),AK(Access
GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc
日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0” 问题现象 pytroch1.3镜像中,去升级了pytroch1.4的版本,导致之前在pytroch1.3跑通的代码报错如下: “Runtim
在ModelArts中使用边缘节点部署边缘服务时能否使用http接口协议? 系统默认使用https。如果您想使用http,可以采取以下两种方式: 方式一:在部署边缘服务时添加如下环境变量: MODELARTS_SSL_ENABLED = false 图1 添加环境变量 方式二:在
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐
ML、TXT、Markdown等),以页签形式展示。 JupyterLab的一大优点是,可以任意排版多个文件。在右侧文件展示区,您可以拖动打开文件,随意调整文件展示位置,可以同时打开多个文件。 图8 多文件任意编排 当在一个Notebook中写代码时,如果需要实时同步编辑文件并查看执行结果,可以新建该文件的多个视图。
不同AI引擎的Notebook,打开后Launcher页面呈现的Notebook和Console内核及版本均不同,图3仅作为示例,请以实际控制台为准。 准备训练数据和代码文件,上传到JupyterLab中。具体参见上传本地文件至JupyterLab。 图4 文件上传按钮 在左侧导航双击打开上传的代码文
03-lts版本的镜像。 步骤三:创建rank_table_file.json 在启动容器前需要使用rank_table_file.json文件用于多机部署。 检查机器网络情况 # 检查物理链接 for i in {0..7}; do hccn_tool -i $i -lldp -g | grep
测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2.myhuaweicloud.com/os-public-
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
用户可在权限管理页面打开开关,选择指定的场景进行运行。 部分运行能力支持同一个节点被定义在不同的运行场景中,但是需要用户自行保证节点之间数据依赖的正确性。另外,部分运行能力仅支持在运行态进行配置运行,不支持在开发态进行调试。 父主题: Workflow高阶能力
VS Code连接后长时间未操作,连接自动断开 问题现象 VS Code SSH连接后,长时间未操作,窗口未关闭,再次使用发现VS Code在重连环境,无弹窗报错。左下角显示如下图: 查看VS Code Remote-SSH日志发现,连接在大约2小时后断开了: 原因分析 用户SS
创建训练作业时出现“实例挂卷失败”的事件 问题现象 训练作业的状态一直在“创建中”,查看训练作业的“事件”,有异常信息“实例挂卷失败”,详情为“Unable to mount volumes for pod xxx ... list of unmounted volumes=[nfs-x]”。
在ModelArts的Notebook中JupyterLab的目录、Terminal的文件和OBS的文件之间的关系是什么? JupyterLab目录的文件与Terminal中work目录下的文件相同。即用户在Notebook中新建的,或者是从OBS目录中同步的文件。 挂载OBS存
在ModelArts的VS Code中如何把本地插件安装到远端或把远端插件安装到本地? 在VS Code的环境中执行Ctrl+Shift+P 搜install local,按需选择即可 父主题: Standard Notebook