检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
基于深度学习的药品分类编码映射系统:设计、实现与优化 介绍 现代医疗行业中,管理和分类药品是一个复杂而重要的任务。基于深度学习的药品分类编码映射系统通过自动化分类和编码,将药品信息与其对应的标准编码(如 ATC code)进行匹配,以提高效率并减少人为错误。 应用使用场景 医疗数
mode效果最好。第三种跟第二种类似,只不过是重复第一帧的值来pad,然后重复第二帧的值来pad,直到最后一帧的值,取的时候也是从中间随机选择连续的F帧。 对于长度大于F的句子,掐头去尾保留连续的F帧。 (7)数据集使用的IEMOCAP,值得一提的是这篇论文只是提出了新颖的方法(triplet loss和cycle
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
登录ModelArts管理控制台,在左侧导航栏选择“开发空间>自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的文本,至少有2种以上的分类,每种分类样本数据数不少20行。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体
【功能模块】自动学习【操作步骤&问题现象】1、创建自动学习声音分类项目2、点击“添加音频”,选择音频文件上传,点确定后,页面显示如下:3、过一会之后,上图的页面并不会主动刷新显示,需要自己刷新一下网页,才能看到新添加的音频文件,如下图所示:【截图信息】【日志信息】(可选,上传日志
纯音频场景下不同码率的音频计费有区别吗? 纯音频场景,不区分音频码率。 父主题: 计费购买
看到MindSpore出实验教程非常棒,先体验一下再说实验非常简单,也是深度学习最基础的minst手写体数字识别。希望以后可以多增加一下其他方向上的教程,让更多人了解并且使用MindSpore邮箱:997385374@qq.com
与回归问题不同的是,分类问题的输出不再是连续值,而是离散值,即样本的类别。分类问题在现实中的应用非常广泛,例如区分图片上的猫和狗、手写数字识别、垃圾邮件分类、人脸识别等。分类问题有二分类(“是”或“不是”)和多分类(多个类别中判别哪一类),而所有的多分类问题都可以转换成多个二分类问题,例
-up两种,与目标检测不同,无论是基于热力图或是基于检测器处理的关键点检测算法,都较为依赖计算资源,推理耗时略长。所以出现了以YOLO为基线的关键点检测器,无热力图的方法,在处理速度上具有一定优势。目前基于YOLOv7-w6模型的人体关键点检测的模型已经开源。
html (参见该贴56楼之后的内容)当时自己做的whl包的精度能达到 0.98517.。。而官方whl包的精度能达到 0.98758.。。。而本次实验,通过清晰的代码和详尽的解释,原原本本的将整个数据集定义、处理、搭建lenet神经网络、定义回调函数收集模型的损失值和精度值,搭建训练
修改标签:在需要修改的标签的“操作”列,单击“修改”,输入修改后的标签,单击“确定”即可。 删除标签:选择对应的标签,单击操作列的“删除”,在弹出的“删除标签”对话框中单击“确定”即可删除对应的标签。 删除后无法再恢复,请谨慎操作。 继续运行 完成数据的确认之后,返回自动学习的页面,在数据
修改已标注的数据 针对“已标注”的文本数据,仅支持删除此文本对象的标签。在“已标注”页签下,在标签名称区域单击标签右上角的叉号,即可删除此文本对象的标签。标签删除后,此文本对象将被呈现至“未标注”页签下。 图3 删除已标注文本的标签 修改标签 针对文本分类的自动学习项目,项目创
完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可
层(layer)是神经网络的核心组件,它是一种数据处理模块,你可以将它看成数据过滤器。进去一些数据,出来的数据变得更加有用。大多数深度学习都是将简单的层链接起来,从而实现渐进式 的数据蒸馏(data distillation)。深度学习模型就像是数据处理的筛子,包含一系列越来越精细的数据过滤器(即层)。
大多数深度学习算法涉及某种形式的优化。优化指的是改变 x 以最小化或最大化某个函数 f(x) 的任务。我们通常以最小化 f(x) 指代大多数最优化问题。最大化可经由最小化算法最小化 −f(x) 来实现。我们把要最小化或最大化的函数称为目标函数 (ive function) 或准则
为,旨在通过精心设计的模式或对原始数据的扰动导致模型的不当行为。典型的例子包括对抗性样本[Zugner¨et al., 2018]和后门触发器[Xi et al., 2021]。 图1显示了在一个典型的深度图学习流程中不同的威胁是如何发生的。作为对比,固有噪声或分布偏移通常发生在
随着深度学习技术在语义加工,人脸识别等领域的成功应用,深度学习方法在自动化骨龄评估中也有了一些尝试。深度学习方法与传统模式识别方法相比,其最大的优点在于无需构造手工特征,将特征提取和分类相结合。传统方法中,因依赖于手工调参,特征参数数量有限;而深度学习可以挖掘到的特征数量成千上万
深度学习计算服务平台是中科弘云面向有定制化AI需求的行业用户,推出的AI开发平台,提供从样本标注、模型训练、模型部署的一站式AI开发能力,帮助用户快速训练和部署模型,管理全周期AI工作流。平台为开发者设计了众多可帮助降低开发成本的开发工具与框架,例如AI数据集、AI模型与算力等。
基于深度学习的 智能社会媒体挖掘-节选 社会媒体的重要性众所周知。全球 人口中,一半人是网民,网民中的三分之 二是社会媒体用户。常见社会媒体包括 Facebook,twitter,国内的微信和微博也是 常用的社会媒体。我们在社会媒体能够做 各种各样的事情,包括和亲友交流沟通、