已找到以下 10000 条记录
  • 基于深度强化学习作战辅助决策研究

    面对瞬息万变战场,如何有效地利用智能化技术实现计算机辅助决策,已经成为制约作战指挥控制技术发展瓶颈。通过深入分析作战决策制定过程,将其转化为一个序列多步决策问题,使用深度学习方法提取包含指挥员情绪、行为和战法演变过程决策状态在内战场特征向量,基于强化学习方法对策略状态行动空

    作者: 可爱又积极
    62
    1
  • 深度学习

    使用深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。图1-2展示了两个不同学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • Flutter笔记:使用相机

    在使用 camera 库进行相机操作之前,我们需要获取用户相机权限。这是因为相机是设备敏感资源,直接涉及到用户隐私,所以在访问相机之前必须得到用户明确许可。 3.1 请求相机权限 在 Flutter 中,我们可以使用 permiss

    作者: jcLee95
    发表时间: 2023-11-25 08:58:25
    42
    0
  • 分享深度学习发展混合学习

      这种学习范式试图跨越监督学习和非监督学习之间界限。由于缺少标签数据和收集标签数据集高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    931
    1
  • 深度学习

    能。借助深度学习,我们可以制造出具有自动驾驶能力汽车和能够理解人类语音电话。由于深度学习出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后数学概念几十年前便提出,但致力于创建和训练这些深度模型编程库是近

    作者: G-washington
    2443
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    741
    1
  • 分享深度学习发展学习范式——混合学习

    为生成图像,而且输出样本类别(多输出学习)。这是基于这样一个想法,通过判别器学习区分真实和生成图像, 能够在没有标签情况下学得具体结构。通过从少量标记数据中进行额外增强,半监督模型可以在最少监督数据量下获得最佳性能。    GAN也涉及了其他混合学习领域——自监督学习,

    作者: 初学者7000
    830
    3
  • 深度学习:主流框架和编程实战》——1.2.2 基于统计深度学习技术

    theory)可知,对于任意非线性函数一定可以找到一个深度学习网络来对其进行表示,但是“可表示”并不代表“可学习”,因此需要进一步了解深度学习样本复杂度,即需要多少训练样本才能得到一个足够好深度学习模型。这些问题都有待于从理论层面进行突破,统计学对深度学习进一步发展有着十分重要意义。

    作者: 华章计算机
    发表时间: 2019-06-04 19:27:58
    5903
    0
  • 深度学习是什么?

    学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音和图像识别方面取得效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    822
    2
  • 双目视觉 标定+矫正 (基于MATLAB)

    此处只是为了说明标定步骤,所以使用图像较少)。                                          4.      标定 点击按钮,开始标定:     5.      校准 从下图可以看到,平均标定误差以及 标定过程中误差较大图像对。    

    作者: 一颗小树x
    发表时间: 2020-12-04 00:20:10
    10344
    0
  • 深度学习概念

    这些学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音和图像识别方面取得效果,远远超过先前相关技术。 深度学习在搜索技术,数据挖掘,机器

    作者: 某地瓜
    1859
    1
  • 适合新手深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测情况。LeCun 等人 (2015) 对监督学习方法以及深层结构形成给出了一个精简解释。Deng

    作者: @Wu
    177
    1
  • 深度学习应用开发学习

    还介绍了神经元模型起源和全连接层概念,以及ReLU等激活函数作用。深度学习核心是构建多层神经网络,而卷积神经网络(CNN)发展,尤其是AlexNet在2012年突破,让我对深度学习强大能力有了更深认识。在学习过程中,我也了解到了不同深度学习开发框架,包括The

    作者: 黄生
    22
    0
  • HarmonyOS之深入解析相机功能和使用

    HarmonyOS 相机模块支持相机业务开发,开发者可以通过已开放接口实现相机硬件访问、操作和新功能开发,最常见操作如:预览、拍照、连拍和录像等。相机静态能力:用于描述相机固有能力一系列参数,比如朝向、支持分辨率等信息。物理相机:物理相机就是独立实体摄像头设备。物理相机ID是用

    作者: Serendipity·y
    发表时间: 2022-02-16 15:20:10
    846
    0
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    657
    1
  • 深度学习应用

    计算机视觉香港中文大学多媒体实验室是最早应用深度学习进行计算机视觉研究华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和D

    作者: QGS
    1525
    2
  • 使用opencv计算相机校正矩阵和失真系数

    1.摄像机标定技术使用车载摄像机拍摄出图像,虽然没有鱼眼相机畸变这么夸张,但是畸变是客观存在,只是人眼难以察觉。使用有畸变图像做车道线检测,检测结果精度将会受到影响,因此进行图像处理第一步工作就是去畸变。为了解决车载摄像机图像畸变问题,摄像机标定技术应运而生。摄像

    作者: yao1230
    2492
    1
  • 相机时延问题

    首先,收到数据传感器时间间隔是50ms,没有问题。但是结束到数据时候系统时间,在某一时刻出现了200多ms延迟。为了补齐数据,延迟三帧周期约为5ms。

    作者: 杨一青
    1036
    4
  • Android 开发自定义相机

    Android中,相信都在自己程序中调用过系统相机拍照或者选择图片,但直接调用系统相机有时候并不能满足我们需求,或者说我们如何去自定义一个相机,那么,我们可以通过Camera和SurfaceView来实现自己相机应用,这里主要讲实现拍照功能以及切换前后摄像头。先来看一张简单效果图。   

    作者: HuangLinqing
    发表时间: 2019-01-10 08:44:10
    7465
    0
  • 机器学习深度学习比较

    数据依赖性性能是两种算法之间主要关键区别。虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解原因。但是,在这种情况下,我们可以看到算法使用以及他们手工制作规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因

    作者: @Wu
    541
    1