检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
指纹识别技术是一种生物特征识别技术,它通过分析人类手指末端皮肤表面的纹路特征来进行身份认证。深度学习是机器学习的一个分支,特别适用于处理大规模高维数据,并在图像识别、语音识别等领域取得了显著成果。 3.1 指纹图像预处理与特征提取
在目前基于深度学习的语言模型结构主要包括三个类别:基于RNN的语言模型,基于CNN的语言模型和基于Transformer的语言模型。接下来我会对它们进行依次介绍,并且逐一分析他们的优缺点。 1.通过RNN的语言模型结构 图1 基于RNN的语言模型结构 随着深度学习的发展,在受到NLP(Natural
使用AI实现照片人物年龄与性别识别 是一个基于 Spring Boot 的开发模板,使用 Maven 构建。
引言 语音识别是将语音信号转换为文本的技术,近年来,深度学习在语音识别领域取得了显著的进展。本文将深入探讨深度学习在语音识别中的应用,包括技术原理、主要算法、应用场景以及未来发展方向。 技术原理 深度学习在语音识别中的成功归功于其对大规模数据的高效学习能力。传统的语音识别系统主要依
引言 语音识别技术是人工智能领域中的一个重要分支,它使得机器能够理解和转换人类的语音为文本。深度学习的出现极大地推动了语音识别技术的发展。本文将介绍如何使用深度学习构建一个基本的语音识别系统,并提供一个实践案例。 环境准备 在开始之前,请确保你的环境中安装了以下工具: Python
基于视频序列的ReID方法基于GAN造图的ReID方法 目录 一、基于表征学习的ReID方法 二、基于度量学习的ReID方法 三、基于局部特征的ReID方法 四、基于视频序列的ReID方法 五、基于GAN造图的ReID方法 参考文献 一、基于表征学习的ReID方法 基于表征学习(Representation
以上是一个简单的基于深度学习网络的蔬菜水果种类识别算法的原理和数学公式示例。在实际应用中,我们可以使用更加复杂的模型和训练技巧来提高模型的性能。 4.部分核心程序 clc; clear; close all; warning off;
信号调制类型识别是在无线通信和无线电频谱监测中的一个重要任务。不同信号调制类型具有不同的频谱特征,深度学习方法在信号调制类型识别中取得了显著的成果。 3.1 深度学习与卷积神经网络 深度学习是一种机器学习方法,卷积神经网络(CNN)是深度学习的重要分支。CNN通
人脸识别是计算机视觉领域中的一项重要任务,它可以对人类面部特征进行自动识别和验证。近年来,随着深度学习的兴起,基于深度学习的人脸识别算法也得到了广泛的应用。本文将介绍基于Alexnet深度学习网络的人脸识别算法,包括详细的实现步骤和数学公式。
8 文字识别计算机文字识别,俗称光学字符识别(Optical Character Recognition),是利用光学扫描技术将票据、报刊、书籍、文稿及其他印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术。该技术可应用于如表1-4所示的这些场景中。表1-4 文字识别技术的应用场景
csv文件,test里面有12500张没有标签的测试图片,train中有带标签的25000张图片,猫狗各12500张,且按照顺序排好了。* 在桶的目录下创建code、log、model、train、test五个文件夹。* 使用华为云OBS客户端上传之前解压的图片,我是将解压后的图片上传的,所以需要一定的时间,文件位
行为动作识别中取得了显著的成果。 原理 1.1 深度学习与卷积神经网络(CNN) 深度学习是一种机器学习技术,它通过构建多层神经网络来模拟人脑的神经元之间的连接,实现对数据的学习和特征提
人员口罩识别算法是一种基于深度学习的图像分类问题。在这个问题中,我们需要在图像中检测并识别出人员是否佩戴口罩。为了解决这个问题,我们可以使用AlexNet模型,它是一种深度学习网络,广泛应用于图像识别任务。 AlexNet模型
本文章主体基于PilgrimHui的论文笔记:《语音情感识别(三)手工特征+CRNN》,在原来基础上,补充了数据处理部分以及论文方法的一些细节,欢迎语音情感分析领域的同学一起讨论。详情请点击博文链接:https://bbs.huaweicloud.com/blogs/159104
实现基于CNN网络的手写字体识别 1、搭建CNN网络模型; 2、设计损失函数,选择优化函数; 3、实现模型训练与测试。 代码: 实现基于CNN网络的手写字体识别 首先下载数据 1、搭建CNN网络模型; class CNN(nn.Module): def __init__(self):
群。图像识别是一系列学科的集合体,它以机器学习、模式识别等知识为基础,因此依赖很多数学知识。本书尽量绕开复杂的数学证明和推导,从问题的前因后果、创造者思考的过程和简单的数学计算的角度来做模型的分析和讲解,目的是以更通俗易懂的方式带领读者入门。另外,在第8~12章的后面都附有参考文
训练一个简单的房价预测。 如果需要完整代码+数据集,可以加V: algo_code 接下来我们会分享更多的 深度学习案例以及python相关的技术,欢迎大家关注。 最后,最近新建了一个 python 学习交流群,会时不时的分享 python相关学习资料,也可以问问题,非常棒的一个群。
深度学习算法中的基于深度学习的行为识别(Deep Learning-based Action Recognition) 近年来,深度学习算法在计算机视觉领域取得了巨大的突破。其中,基于深度学习的行为识别成为研究的热点之一。本文将介绍深度学习算法在行为识别方面的应用,并探讨其优势和挑战。
sp; 基于GoogLeNet深度学习网络的睁眼闭眼识别算法是一种利用卷积神经网络(CNN)进行图像分类的任务,旨在识别图像中人物的眼睛状态,即判断眼睛是睁开还是闭合。GoogLeNet是由Christian Szegedy等人在2014年提出的,以其高效的深度和创新的Incep
行为动作识别中取得了显著的成果。 原理 1.1 深度学习与卷积神经网络(CNN) 深度学习是一种机器学习技术,它通过构建多层神经网络来模拟人脑的神经元之间的连接,实现对数据的学习和特征提