检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2 视频监控分析视频监控分析是利用机器视觉技术对视频中的特定内容信息进行快速检索、查询、分析的技术。由于摄像头的广泛应用,由其产生的视频数据已是一个天文数字,这些数据蕴藏的价值巨大,靠人工根本无法统计,而机器视觉技术的逐步成熟,使得视频分析成为可能。通过这项技术,公安部门可以在海量的监控视频中搜寻到罪犯;在拥
应用场景 该解决方案基于华为云语音交互服务语音识别构建,可自动将用户上传到对象存储服务的wav语音文件转化为文字,并将结果存放到指定OBS桶。该方案可以将用户上传在OBS的语音文件识别成可编辑的文本,支持中文普通话的识别和合成,其中语音识别还支持带方言口音的普通话识别以及方言(四川话
网络,其数据流式图支持非常自由的算法表达,可以轻松实现深度学习以外的机器学习算法。 用户可以写内层循环代码控制计算图分支的计算,TensorFlow会自动将相关的分支转为子图并执行迭代运算。TensorFlow也可以将计算图中的各个节点分配到不同的设备上执行,充分利用硬件资源。
码器等。深度学习的思想:深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。深度学习应用图像处理领域主要应用图像分类(物体识别):整幅图像的分类或识别物体检测:检测图像中物体的位置进而识别物体图像分
OCR服务可以识别文本格式文件吗 增值税发票识别API支持使用pdf、ofd文件进行识别。其他API不能直接识别word、pdf、excel等文件,可将此类文件转换为图片进行识别。pdf转图片识别示例请参见识别结果后处理。 父主题: 产品咨询类
况下输出的是对角线的值全为1,其余值全为0。除此之外,Numpy还预置了很多函数,使用这些函数可以作用于矩阵中的每个元素。下面我们来看下表2-1。表2-1 Numpy预置函数及说明 (1)矩阵之间的点乘矩阵真正的乘法必须满足第一个矩阵的列数等于第二个矩阵的行数,矩阵乘法的函数为dot。示例代码如下:import
9 Numpy中的arg运算argmax函数就是用来求一个array中最大值的下标。简单来说,就是最大的数所对应的索引(位置)是多少。示例代码如下:index2 = np.argmax([1,2,6,3,2]) #返回的是2argmin函数可用于求一个array中最小值的下标,用法与
a)本书第2~7章代码运行环境对应的pyTorch图2-6 PyTorch安装界面 b)本书第8~12章代码运行环境对应的pyTorch图2-6 (续)按照系统提示,我们可以使用系统推荐的命令进行安装。值得注意的是,如果你的电脑没有支持的显卡进行GPU加速,那么CUDA这个选项就选择None
最终的输出。综上,前人基于深度学习的骨龄评估方法,其采用端到端的输出方式,步骤简单,精度更高,且对复杂图像的鲁棒性也更高。然而,目前几乎所有深度学习的骨龄评估方法,都直接输出骨龄,并不能给医生详细的结果解释和手骨特征描述。无论是从提供信息的全面性上,还是对结果的可解释性上,该类方
识别仅仅基于水果的轮廓曲线特征或者颜色特征,识别精度不高,分类效果较差。近年来,随着计算机技术的提升和新型算法的提出,出现了一些基于模式识别算法的较新方法,比如基于卷积神经网络的水果识别系统和基于深度学习的水果图像识别系统。 最初,深度学习是为了解决图像识别问题而提出的;如今,深
一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【水果识别】基于matlab GUI橙子数量识别【含Matlab源码 1821期】 获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
文字识别OCR 简介及免费试用 什么是文字识别服务 华为云文字识别OCR提供在线文字识别、图片文字提取服务,将图片、扫描件或PDF、OFD文档中的文字识别成可编辑的文本。OCR文字识别支持证件识别、票据识别、定制模板识别、通用表格文字识别等。 在开通文字识别OCR前,可先使用OC
些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习
模板匹配的实际操作思路很简单:拿已知的模板,和原图像中同样大小的一块区域去对。最开始时,模板的左上角点和图像的左上角点是重合的,拿模板和原图像中同样大小的一块区域去对比,然后平移到下一个像素,仍然进行同样的操作, ……所有的位置都对完后,差别最小的那块就是我们要找的物体。 以上所描述的是相似性测度法
结果来自训练轮数epochs=10,准确率Accuracy=98.42%的模型: 包含错误预测的结果: 8.加载现有模型(可选) 本文的训练函数会保存每次训练的模型,下一次预测可以不调用训练函数,而是直接加载已经保存的模型来进行预测: # 加载保存的模型 net.load_state_dict(torch
基于websocket接口对输入的音频流进行识别,实时返回识别结果。
基于websocket接口对输入的音频流进行识别,实时返回识别结果。
语音转换成文本的技术。从早期的基于模板的方法到严格的统计模型,再到如今的深度模型,语音识别技术已经经历了几代的更迭。在深度学习模型之前,自动语音识别的主流模型是隐马尔可夫模型(Hidden Markov Models,HMM)。在使用这些模型之前,所有的自动语音识别系统都需要经历
都得到了非常好的应用。与语音智能识别技术相比较,视频图像的及技术相对更加复杂一些。 就深度学习技术来说,一个重要的学习技术和它的应用领域是对特定事物的正确认知。这种技术是可以对有限范围的物体进行预先识别。就像,对于人脸的识别检测,正常只能识别图像的人脸存在,但是对于其他物体则无能
算法构建模型的过程。此样例针对预置的花卉图像数据集,对已有图像数据进行标注,然后使用预置的“ResNet_v1_50”算法对数据进行训练,得到一个可用的模型,最后,将此模型部署为在线服务。部署完成后,用户可通过在线服务识别输入图片的花卉种类。使用预置算法完成模型构建的步骤如下所示