检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
txt。 下载完成后将上述3个文件数据上传至OBS桶中的imagenet21k_whole文件夹中。上传方法请参考上传数据和算法到OBS。 上传算法到SFS 下载Swin-Transformer代码。 git clone --recursive https://github.co
启动推理服务之前检查卡是否被占用、端口是否被占用,是否有对应运行的进程 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。启动后容器默认端口是8080。
参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6.3.911-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud &&
路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 cd ./llm_train/AscendSpeed 编辑llm_train/Asce
路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 cd ./llm_train/AscendSpeed 编辑llm_train/Asce
参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6.3.912-xxx.zip,并直接进入到llm_train/AscendFactory文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud &&
NPU预训练指导(6.3.912) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。 本文档主要介绍如何利用ModelArts Lite Server
型部署上线的端到端开发流程(即AI全流程开发)。 本文档介绍了如何在ModelArts管理控制台完成AI开发,如果您习惯使用API或者SDK进行开发,建议查看《ModelArts SDK参考》和《ModelArts API参考》获取帮助。 使用AI全流程开发的端到端示例,请参见 《快速入门》
NPU推理指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。 本文档主要介绍如何利用ModelArts Lite Server
me}:在step5中,使用Dockerfile创建的新镜像名称。 <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
tensor-parallel-size:并行卡数。 --hostname:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max
--tensor-parallel-size:并行卡数。 --hostname:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max
ndspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm接口方式启动服务,API接口公网地址与"/generate"拼接而成;如果以opena
在创建模型时填写与您镜像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,端口和协议可根据镜像实际使用情况自行填写,ModelArts提供的请求协议和端口号的缺省值是HTTPS和8080。请参考https示例。 (可选)健康检查的URL路径必须为"/health"。
me}:在step5中,使用Dockerfile创建的新镜像名称。 <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
${chat_template_path} \ --dtype ${dtype} \ --host=${docker_ip} \ --port=${port} \ --gpu-memory-utilization=0.9 \ --trust-remote-code 多模态推理服务启动模板参数说明如下:
${chat_template_path} \ --dtype ${dtype} \ --host=${docker_ip} \ --port=${port} \ --gpu-memory-utilization=0.9 \ --trust-remote-code 多模态推理服务启动模板参数说明如下:
打开VSCode的Remote-SSH配置文件,添加SSH配置项,注意替换服务器IP以及容器的端口号: Host Snt9b-dev HostName 服务器IP User root port 容器SSH端口号 identityFile ~\.ssh\id_rsa
body中“auth.scope”的取值需要选择“project”,请求示例如下所示。 在构造请求中以调用获取用户Token接口为例说明了如何调用API。 { "auth": { "identity": { "methods": [ "password"