检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。 父主题:
盘古大模型支持通过对接内容审核,实现拦截大模型输入、输出的有害信息,保障模型调用安全。用户可依据需求选择是否开通、启用内容审核。 推荐用户购买内容审核套餐包,购买内容审核套餐包时,需要选择“文本内容审核”套餐。 如果未启用内容审核服务,可以在开通服务之后,查看服务详情,在详情界面右上角开通内容审核。 父主题: 调用盘古大模型
自定义,后续会有例子说明。 上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,上述tool_list中包含的工具在SDK中并不存在,需要替换成实际的工具。
一定的惩罚。当值为正数时,模型会更倾向于生成新的Token,即更倾向于谈论新的话题。 词汇重复度控制 用于调整模型对频繁出现的Token的处理方式。即如果一个Token在训练集中出现的频率较高,那么模型在生成这个Token时会受到一定的惩罚。当的值为正数时,模型会更倾向于生成出现
供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在逻辑与语义关系,因此在处理复杂语言任务时展现出更高的精准度和效率。这不仅提高了任务的成功率,也大幅提升了用户体验,使盘古大模型成为企业和开发者构建智能应用的首选。 创作能力强 盘古
更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题: 典型训练问题和优化策略
再结合训练过程中模型的收敛情况动态调整。 数据批量大小(batch_size) >=1 4/8 数据批量大小是指对数据集进行分批读取训练时,所设定的每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越
能提高泛化能力。因此,批大小需要根据数据集的规模和特点,以及模型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相应增大;如果批大小减小,那么学习率也应减小。 训练轮数 1
一定的惩罚。当值为正数时,模型会更倾向于生成新的Token,即更倾向于谈论新的话题。 词汇重复度控制 用于调整模型对频繁出现的Token的处理方式。即如果一个Token在训练集中出现的频率较高,那么模型在生成这个Token时会受到一定的惩罚。当的值为正数时,模型会更倾向于生成出现
如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content 是 String 对话的内容,可以是任意文本,单位token。 设置多轮对话时,message中content个数不能超过20。 最小长度:1
} } } 图4 填写请求Body 单击Postman界面的“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功。单击“Headers”选项,复制“X-Subject-Token”参数对应的值,该值即为获取的Token。 图5
用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定。当用户向AI助手提问时,大模型就会根据用户的问题自动规划调用相应工具,从而实现对应的功能。 AI助手具备以下核心功能: 大模型调用能力:AI助手可以根据特定的指令
将在后续示例中说明。 此外,上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,上述toolList中包含的工具在SDK中并不存在,需要替换成实际的工具。
ask("写一篇五言律诗").answer 支持调整的参数解释: max_tokens: Optional[int] # 完成时要生成的令牌的最大数量 temperature: Optional[float] # 调整随机抽样的程度,温度值越高,随机性越大;
能提高泛化能力。因此,批大小需要根据数据集的规模和特点,以及模型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相应增大;如果批大小减小,那么学习率也应减小。 训练轮数 1
象。 欠拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很容易受到数据噪声的干扰,从而影响模型的鲁棒性。当目标任务的难度较大时,该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取一些方法来扩充您的数据,从而满足微调要求,比如: 数据增强:在传统机器学习中,可
pangu.ask("写一篇五言律诗").getAnswer(); 支持调整的参数解释。 private int maxTokens; // 完成时要生成的令牌的最大数量 private double temperature; // 调整随机抽样的程度,温度值越高,随机性越大 private
execute({"documents": docs})) Map-Reduce:先将文档单独进行摘要, 将摘要后的文档再提交给模型。 必要时,会循环迭代摘要。 from pangukitsappdev.api.embeddings.factory import Embeddings
} } } 图5 填写请求Body 单击Postman界面“Send”按钮,发送请求。当接口返回状态为201时,表示Token接口调用成功,此时单击“Headers”选项,找到并复制“X-Subject-Token”参数对应的值,该值即为需要获取的Token。
变更配置 盘古NLP大模型的模型订阅服务和推理服务默认采用包周期计费,训练服务则默认采用按需计费。使用周期内不支持变更配置。 欠费 在使用云服务时,如果账户的可用额度低于待结算账单金额,即被判定为账户欠费。欠费可能会影响云服务资源的正常运行,因此需要及时充值。 模型订阅服务和推理服务为预付费,购买后不涉及欠费。