检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
目标追踪2D Octopus 目录 标注文件目录结构 +--- 1599625710056 | +--- 1599625710056.jpg | +--- 1599625710056.json +--- 1599625740054 | +--- 1599625740054
目标追踪3D Octopus 目录 标注文件目录结构 +--- 1611801018801 | +--- 1611801018801.json | +--- 1611801018801.pcd +--- 1611801024401 | +--- 1611801024401
急刹(Emergency Braking)检测 自动驾驶车辆急刹有两个典型阈值:ACC(Adaptive Cruise Control)的最大减速度,和AEB(Autonomous Emergency Braking)的最大减速度。 急刹检测的目的是判断主车在行驶过程中是否达到ACC和AEB的最大减速度。
如何一键恢复在线仿真功能? 现象:使用在线仿真功能时,场景损坏导致加载失败,或在线仿真软件所在机器系统发生故障导致数据丢失或其他不可预知问题。 解决办法: 重启在线仿真软件并重新加载场景。 关闭在线仿真软件并重新启动,先单击 √图标,再单击在线仿真软件播放按钮。 图1 在线仿真软件播放按钮
消息topic格式示例 消息topic具体格式要求请参考“消息topic格式规范”。接收到的消息topic示例请参考如下示例: Vehicle Gnss Ego_tf Object_array_vision Tag_record Control Predicted_objects
急转向(Steering)检测 侧向加速度过大会对车辆的侧倾稳定性和乘员体验造成不良影响,急转向检测的目的是判断主车在行驶过程中,侧向加速度是否过大。 侧向加速度的阈值设置为2.3 ,具体参考《i-vista评测规程》第5页最后一段。 该指标关联的内置可视化时间序列数据为:accY。
车道保持(Lane Keeping)检测 车道保持检测的目的是判断主车在行驶过程中能否很好地沿车道中心线行驶。 车道保持检测分为两个指标: 偏移车道中心线距离检测 偏移车道中心线横摆角检测 偏移车道中心线距离检测是指主车的质心相对于车道中心线的垂直距离,当该偏移距离大于某一阈值时(本设计取0
碰撞时间(Time to Collision)检测 碰撞时间检测的目的是判断主车在行驶中与其他交通车的碰撞时间是否过小。 碰撞时间是指主车与引导车的相对距离除以主车与引导车的相对速度。 即使主车未发生碰撞,当碰撞时间过小时,发生碰撞的风险太大,这样也是不合理的。 当碰撞时间小于某
3D预标注 3D预标注当前支持目标检测和目标分割两种标注功能。 前提条件 在服务控制台“总览”>“我的模型”区域,开通“2D图像生成”服务,具体操作步骤请参考开通我的模型和购买套餐包。 操作步骤 在左侧菜单栏中选择“智驾模型服务 > 3D预标注”。 选择“3D预标注”页签。 单击右上角的“添加文件”。
静态场景(地图) 静态场景组成 领域模型设计 静态场景样例 附录 父主题: Open SCENARIO2.0场景说明
获取数据仓库的数据列表 功能介绍 获取数据仓库的数据列表 URI POST /v1.0/{project_id}/common/warehouses/{data_warehouse_id}/data 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String
开通我的模型和购买套餐包 在使用智驾模型服务场景识别、2D图像生成、2D预标注、3D预标注等功能之前,需先开通我的模型。开通后,我的模型是根据API调用次数收取费用,推荐您购买模型套餐包,价格比按需计费模式更优惠。开通服务和购买套餐包之后,您可以在“我的模型”区域查看开通状态和套餐包使用情况。
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 FROM ros:noetic COPY ros_hard_mining.py /home/main/ # 算法启动示例:
2.5D人车图片标注任务 2.5D人车图片标注任务相比于2D人车标注任务,由2D的矩形框转变为2.5D框,可以定位车辆车身的正面与侧面,辅助开发者辨别车辆的行驶方向。 绘制对象 单击2.5D图片标注任务,选择一张图片进入人工标注。 选择标注工具。 单击左侧工具栏2.5D标注工具(快捷键5,非小键盘)。
预警系统激活(Warning)检测 预警系统激活用于评价算法是否激活以下五项预警功能: 盲区预警 前方碰撞预警 车道偏离预警 泊车碰撞预警 后方横向车流预警 当算法pb中检测到预警项且状态为STATE_ACTIVE,则视该预警为激活态,否则为非激活态;当预警状态从非激活态转变为激活态,视为激活一次;
附录(Appendix) Scalar Units Enum Lists Struct ALKS样例 父主题: 动态场景
全错则是0分,全对则是100分。 如果评分项是空集,则是0分。 C类, 不参与评分。 AB类均匀权重评测分数计算实现(Equation) 本设计的评测分数旨在反映自动驾驶的安全性,因此计算过程中的评测分值分布为: A类:60分 B类:40分 具体实现公式为: 其中: : A类指标参与评测的总数目。 : A类指标未通过的数目。
乘员舒适性(Driving Comfort)检测 乘员舒适性检测关注的是自动驾驶车辆行驶过程中,驾驶员感受到的舒适程度。 舒适程度通常可以利用整个行驶过程中的速度方差来进行客观反映,而变异系数是可以对不同速度区间舒适程度进行比较。 变异系数的公式如下所示。 表示变异系数,表示标准差,表示均值。
object_array_vision .pb 感知数据信息。 标签数据 标签记录数据(tag_record) tag_record .pb 在车端标记驾驶过程中人工和自动驾驶路段以及其他重要信息。 控制数据 控制指令(control) control .pb 自车的方向盘转角、加速度值等控制数据。 规划路径
3D2D融合预标注 自动驾驶传感器中,各个模态有各自的优势和劣势。比如相机模态对visual appearance的感知更为准确,激光雷达模态对距离感知更为有效。然后当LiDAR扫描线数过低时,经常无法甄别物体的类型,但是此时如果能结合LiDAR扫描和2D图像检测,则可以由3D扫