检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
步骤六:预测分析 运行完成的工作流会自动部署相应的在线服务,您只需要在相应的服务详情页面进行预测即可。 在服务部署节点单击“实例详情”或者在ModelArts管理控制台,选择“模型部署 > 在线服务”,单击生成的在线服务名称,即可进入在线服务详情页。 在服务详情页,单击选择“预测”页签。
觉判读。简单的说就是识别一张图中是否是某类/状态/场景,适合图中主体相对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
部署服务时,ModelArts报错“ModelArts.3520: 在线服务总数超限,限制为20”,接口返回“A maximum of xxx real-time services are allowed.”,表示服务数量超限。 正常情况下,单个用户最多可创建20个在线服务。可采取以下方式处理: 删除状态为“异常”的服务。
在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 上传文件至JupyterLab 下载JupyterLab文件到本地 在JupyterLab中使用MindInsight可视化作业
使用自定义镜像创建在线服务,如何修改默认端口 当模型配置文件中定义了具体的端口号,例如:8443,创建AI应用没有配置端口(默认端口号为8080),或者配置了其他端口号,均会导致服务部署失败。您需要把AI应用中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下:
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。 图1 部署在线服务异常 解决方法 出现此问题现象,通常
在“订单信息确认”页面,确认服务信息和费用,单击“确定”跳转至在线推理服务列表页面。 当“状态”变为“运行中”表示在线推理服务部署成功,可以进行服务预测。 推理服务预测 待在线推理服务状态变为“运行中”时,便可进行推理预测。 在在线推理服务列表页面,选择服务“状态”为“运行中”的服务。
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
场景 说明 基于ModelArts Standard一键完成商超商品识别模型部署 - 在线服务 物体检测 此案例以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 第三方推理框架迁移到ModelArts Standard推理自定义引擎
主要在服务部署节点的输出中使用 如果您没有特殊需求,可直接使用内置的默认值。 使用案例 主要包含三种场景的用例: 新增在线服务 更新在线服务 服务部署输出推理地址 新增在线服务 import modelarts.workflow as wf # 通过ServiceStep来定义一个服务部署节点,输入指定的模型进行服务部署
文件内容:文件保存为“csv”文件格式,文件内容以换行符(即字符“\n”,或称为LF)分隔各行,行内容以英文逗号(即字符“,”)分隔各列。文件内容不能包含中文字符,列内容不应包含英文逗号、换行符等特殊字符,不支持引号语法,建议尽量以字母及数字字符组成。 训练数据: 训练数据列数一致,总数据量不少于
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
初始化。 因此,推荐在创建AI应用时配置健康检查,并设置合理的延迟检测时间, 实现实际业务的是否成功的检测,确保服务部署成功。 父主题: 在线服务
已存在部署完成的服务。 已完成模型调整,创建AI应用新版本。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“部署上线 > 在线服务”,默认进入“在线服务”列表。 在部署完成的目标服务中,单击操作列的“修改”,进入“修改服务”页面。 在选择模型及配置中,单击“增加模型版本进行灰度发布”添加新版本。
任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的人们来
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发