检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。 其他意图:包括普通对话、问答、或其他功能请求。该分支最终会引导文本到大模型节点进行处理。 提问器节点:当意图识别为“文本翻译”意图时,工作流将进入提问器节点。
在提示词撰写区域输入提示词文本,可以插入若干个变量,变量需要使用占位符{{ }}标识。 图2 撰写提示词 撰写完成后,单击“确定”,平台会自动识别插入的变量。提示词中识别的变量将展示在变量定义区域。 变量名称可以进行修改,如添加备注信息以便更好理解变量的作用。 图3 变量定义 变量定义区域展示的
Pangu-CV-ObjectDetection-N-2.1.0 2024年12月发布的版本,支持全量微调、在线推理。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古CV大模型支持的具体操作:
按照句子的过滤粒度,自动识别段落结尾处的内容是否完整,如果不完整,则过滤。 广告数据过滤 按照句子的过滤粒度,删除文本中包含广告数据的句子。 QA对过滤 过滤包含以下情况的QA对: 问题不是string格式。 回答为空。 回答无意义。 语种过滤 通过语种识别模型得到文档的语言类型,筛选所需语种的文档。
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程 > 数据获取”,单击界面右上角“创建导入任务”。 在“创建导入任务”页面选择所需要的“文件内容”、“文件格式”、“导入来源”,并单击“选择路径”上传数据文件。 NLP大模型评测数据集支持的格式见表1。 表1 评测数据集格式 模型类型 评测数据集格式
连接大模型节点和其他节点。 步骤4:配置意图识别节点 意图识别节点通过大模型推理分析用户输入,匹配预定义的意图关键字类别,并根据识别结果引导至相应的处理流程,通常位于工作流的前置位置。 意图识别节点为可选节点,若无需配置,可跳过该步骤。 意图识别节点配置步骤如下: 拖动左侧“意图识别”节点至画布中,单击该节点以打开节点配置页面。
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古专业大模型支持的具体操作: 模型 预训练 微调 模型压缩 在线推理 能力调测 Pangu-NLP-BI-4K-20241130
用于海洋基础要素预测 2024年11月发布的版本,支持在线推理、能力调测特性,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241130 用于区域海洋基础要素预测 2024年11月发布的版本,支持预训练、微调、在线推理、能力调测特性,1个训练单元起训及1个实例部署。
在左侧导航栏中选择“数据工程 > 数据获取 > 数据导入”,单击界面右上角“创建导入任务”。 在“创建导入任务”页面,选择“数据集类型”、“文件格式”和“导入来源”。 对于文本类数据集,部分数据类型支持将自定义格式转换为jsonl格式,具体步骤请参见使用Python脚本转换自定义格式为jsonl格式。
盘古大模型服务的功能限制详见表3。 表3 功能限制 功能类型 使用限制 数据工程-数据格式要求 ModelArts Studio平台支持接入的数据需要满足格式要求,包括文件格式、单个文件大小、所有文本大小以及文件数量等,请参考《用户指南》“使用数据工程构建数据集 > 数据集格式要求”。 模型开发-训练、评测最小数据量要求
以通过工作流方式,适当编写一定代码,来构建逻辑复杂、且有较高稳定性要求的Agent应用,开发者也可以灵活组合各个节点,包含大模型节点、意图识别节点、提问器节点、插件节点等,通过“拖拉拽”的方式快速搭建一个工作流。 Agent开发平台功能及优势 Agent开发平台具有能力扩展、自定
据见表1,该数据集格式要求请参见文本类数据集格式要求。 表1 训练NLP大模型数据集类型要求 基模型 训练场景 数据集类型 数据集内容 文件格式 NLP 预训练 文本 预训练文本 jsonl 微调 文本 单轮问答 jsonl、csv 文本 多轮问答 jsonl 文本 单轮问答(人设)
如何让大模型按指定风格或格式回复 要让模型按照特定风格回复,可以提供领域和角色信息(如目标受众或特定场景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。
同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。 表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据 csv 回归模型 异常检测模型 分类模型 回归分类数据 csv 训练预测大模型所需数据量 训练预测
作流。 流程型Agent:以工作流为任务执行核心,用户可以通过在画布上“拖拽”节点来搭建任务流程。支持编排的节点类型包括:大模型节点、意图识别节点、提问器节点、插件节点、判断节点、代码节点、消息节点。 优点:高度可扩展,支持低代码开发。 缺点:对话交互的智能度较低,复杂场景下流程分支较多,维护难度较大。
基于上述功能,平台还提供了灵活的工作流设计功能,支持用户编写少量代码来构建逻辑复杂、稳定性要求高的Agent应用。通过拖拉拽方式,开发者可以组合各种组件(如大模型、代码、意图识别等),快速搭建工作流,实现更高效的应用开发。 平台还提供全链路信息观测和调试工具,支持开发者深入分析工作流执行过程中的每个环节。通过对信息
重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型评测 模型压缩 在线推理 能力调测 Pangu-NLP-N1-Chat-32K-20241130
图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。
@huaweicloud/huaweicloud-sdk-core npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explor