检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线服务预测报错DL.0105 问题现象 在线服务预测报错DL.0105,报错日志:“TypeError:‘float’object is not subscriptable”。 原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码
在线服务预测报错ModelArts.4503 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4503。 原因分析及处理方法 服务预测报错ModelArts.4503有多种场景,常见场景如下: 通信出错 请求报错:{"
在线服务预测报错ModelArts.4302 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4302。 原因分析及处理方法 服务预测报错ModelArts.4302有多种场景,以下主要介绍两种场景: "error_msg":
使用大模型在ModelArts Standard创建AI应用部署在线服务 背景说明 目前大模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数大模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入AI应用时,需要支持动态调整租户存储
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is
击操作列“部署>在线服务”,将AI应用部署为在线服务。 图6 部署在线服务 在“部署”页面,参考下图填写参数,然后根据界面提示完成在线服务创建。本案例适用于CPU规格,节点规格需选择CPU。如果有免费CPU规格,可选择免费规格进行部署(每名用户限部署一个免费的在线服务,如果您已经
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
在线服务部署是否支持包周期? 在线服务不支持包周期的计费模式。 父主题: 功能咨询
name/obs_file.txt",path="/home/user/obs_file.txt") 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
ppCode认证(部署模型为在线服务中的“支持APP认证”参数)。对于已部署的在线服务,ModelArts支持修改其配置开启AppCode认证。 本文主要介绍如何修改一个已有的在线服务,使其支持AppCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts
模型使用CV2包部署在线服务报错 问题现象 使用CV2包部署在线服务报错。 原因分析 使用OBS导入元模型,会用到服务侧的标准镜像,标准镜像里面没有CV2依赖的so的内容。所以ModelArts不支持从对象存储服务(OBS)导入CV2模型包。 处理方法 需要您把CV2包制作为自定
访问在线服务支持的认证方式 通过Token认证的方式访问在线服务 通过AK/SK认证的方式访问在线服务 通过APP认证的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的访问通道 通过公网访问通道的方式访问在线服务 通过VPC访问通道的方式访问在线服务 通过VPC高速访问通道的方式访问在线服务 父主题: 将模型部署为实时推理作业
访问在线服务支持的传输协议 使用WebSocket协议的方式访问在线服务 使用Server-Sent Events协议的方式访问在线服务 父主题: 将模型部署为实时推理作业
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
使用自定义镜像创建在线服务,如何修改默认端口 当模型配置文件中定义了具体的端口号,例如:8443,创建AI应用没有配置端口(默认端口号为8080),或者配置了其他端口号,均会导致服务部署失败。您需要把AI应用中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下:
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
6-gpu"。修改完成后,重新执行导入模型和部署为在线服务的操作。 参数设置完成后,单击“下一步”,确认规格参数,单击“提交”,完成在线服务的部署。 您可以进入“模型部署 > 在线服务”页面,等待服务部署完成,当服务状态变为“运行中”时,表示服务部署成功。预计时长2分钟左右。 在线服务部署完成后,您可以单
部署服务时,ModelArts报错“ModelArts.3520: 在线服务总数超限,限制为20”,接口返回“A maximum of xxx real-time services are allowed.”,表示服务数量超限。 正常情况下,单个用户最多可创建20个在线服务。可采取以下方式处理: 删除状态为“异常”的服务。