检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建文本分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测) 部署在线服务 使用大模型在ModelArts
异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在问题时,才会考虑是否使用fp32进行尝试)。使用fp32精度模式的配置文件如下: 配置文件: # config.ini [ascend_context]
创建声音分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
创建图像分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。
迁移走。 A050931 训练toolkit 预检容器 训练预检容器检测到GPU错误。 训练预检容器检测到GPU错误。 A050932 训练toolkit 预检容器 训练预检容器检测IB错误。 训练预检容器检测IB错误。 父主题: 资源池
网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh -i <密钥相对路径> -p <端口> ma-user@<域名/ip> SSH可用时跳过3继续远端排查。 SSH不可用,排查3。
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
区域选择“Resource Monitor”,展示“CPU使用率”和“内存使用率”。 图22 资源监控 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
Integer 模型ID。 model_name String 模型名称。 model_usage Integer 模型用途。 1代表图像分类 2代表检测物体的类别和位置 3代表图像语义分割 4代表自然语言处理 5图嵌入 model_precision String 模型精度描述。 model_size
name/obs_file.txt",path="/home/user/obs_file.txt") 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
场景一:环境预检测失败、硬件检测出现故障,系统隔离所有故障节点并重新下发训练作业。 图1 预检失败&硬件故障 场景二:环境预检测失败、硬件无故障,系统随机再分配节点并重新下发训练作业。 图2 预检失败&硬件正常 场景三:环境预检测成功并进入用户业务阶段,硬件检测出现故障并且用户
练体验。 容错检查包括两个检查项:环境预检测与硬件周期性检查。当环境预检查或者硬件周期性检查任一检查项出现故障时,隔离故障硬件并重新下发训练作业。针对于分布式场景,容错检查会检查本次训练作业的全部计算节点。 推理部署故障恢复 用户部署的在线推理服务运行过程中,如发生硬件故障导致推
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
在开发环境中创建TensorBoard可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动TensorBoard Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间 > Note
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
参数设置情况。 启动探针:用于检测应用实例是否已经启动。如果提供了启动探针(startup probe),则禁用所有其他探针,直到它成功为止。如果启动探针失败,将会重启实例。如果没有提供启动探针,则默认状态为成功Success。 就绪探针:用于检测应用实例是否已经准备好接收流量。
增加3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 指定模型的启动命令,您可以自定义该命令。 说明: 包含字符$,|,>,<,`,
行历史。 图5 在Notebook Job Definitions页签单击任务名称 图6 设置定时任务 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发