检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pt4_data.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 将自定义的推理文件和模型配置文件保存在训练生成的模型文件目录下。如训练生成的模型保存在“/home/ma-user/work/tensorflow_mlp_mnist_local_mode/trai
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
--tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。
save-interval 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务。 当参数值>=max_steps时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<max_steps时,生成模型会每经过save_steps次,保存一次模型版本。 模型版本保存次数=max_steps//save_steps
如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access.redhat.com/solutions/29894,(可能会影响文件检索性能)。 建议与总结 在创建训练作业前,推
克隆ModelArts Ascend代码库。 新建Terminal,执行下述命令将对应的repo克隆到Notebook实例。 git clone https://gitee.com/ModelArts/modelarts-ascend.git 图1 下载示例代码 昇腾迁移案例在“~/work
json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
“配置节点间SSH免密互信”开关打开,并设置“SSH密钥目录”,一般保持默认值。该配置会在下发训练作业后,自动在训练容器的“/home/ma-user/.ssh”目录下生成SSH密钥文件和配置文件“authorized_keys config id_rsa id_rsa.pub”。 提交创建训练作业后,训练过
ta.json.json)按照下面的数据存放目录要求放置。 样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
py,替换原来权重里的tokenization_chatglm.py。 https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py https://huggingface.co/THUDM/chatg
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、PLOG、LOG
save-interval 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、PLOG、LOG
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、PLOG、LOG
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、PLOG、LOG
示例中,默认生成在“processed_for_input”文件夹下。如果用户需要修改,可添加并自定义该变量。 OUTPUT_SAVE_DIR /home/ma-user/ws/llm_train/saved_dir_for_output/ 该路径下统一保存生成的 CKPT、PLOG、LOG