检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表15 storage定义数据结构说明
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表12 storage定义数据结构说明
该转换脚本用于Fill-Mask 任务,若是其他类型任务请按实际场景修改转换脚本。 onnx模型转mindir格式,执行如下命令,转换完成后会生成bert_model.mindir文件。 converter_lite --fmk=ONNX --modelFile=bert_model
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
详情接口获取。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/notebooks 表1 路径参数 参数
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
自动停止参数,如表10 auto_stop字段数据结构说明所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 failed_reasons Object 创建、启动失败失败原因,如表16所示。 extend_params
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
failed_reasons Object 创建、启动失败原因,如表22所示。 annotations Map<String,String> 注解信息。 其中,生成的url信息,不可直接访问使用。 extend_params Map<String,String> 扩展参数。 表20 storage定义数据结构说明
登录容器镜像服务控制台。选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 图4 获取登录指令 此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。
steps=[model_registration] ) 上述案例中,系统会自动获取订阅模型中的自定义镜像,然后结合输入的OBS模型路径,注册生成一个新的模型,其中model_obs可以替换成JobStep的动态输出。 model_type支持的类型有:"TensorFlow"、"MXNet"、"Caffe"、
rd资源池”页面。 切换到“网络”页签,单击“创建”,弹出“创建网络”页面。 在“创建网络”弹窗中填写网络信息。 网络名称:创建网络时默认生成网络名称,也可自行修改。 网段类型:可选“预置”和“自定义”。自定义网络建议使用网段:10.0.0.0/8~24、172.16.0.0/12~24、192
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
log_url=log_obs_path ) # job_name是可选参数,可不填随机生成工作名 job_instance = estimator.fit(inputs=[input_data],
是 训练源代码的OBS路径。 --data-url String 是 训练数据的OBS路径。 --log-url String 是 存放训练生成日志的OBS路径。 --train-instance-count String 是 训练作业实例数,默认是1,表示单节点。 --boot-file
0条。数据集示例如下,单轮对话也可以复用此格式。您可以单击下载,获取示例数据集“simple_moss.jsonl”,该数据集可以用于文本生成类型的模型调优。 {"conversation_id": 1, "chat": {"turn_1": {"Human":"text","MOSS":"text"}
法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的数据文件本地路径和训练生成的模型输出本地路径。 “job_config”字段下的“parameters_customization”表示是否支持自定义超参,此处填true。