检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Job>Stop”,或者直接在网页端单击终止。 图30 终止训练作业 步骤5:清除相应资源 为避免产生不必要的费用,在完成试用后,建议您删除相关资源,如在线服务、训练作业及其OBS目录。 停止Notebook:在“Notebook”页面,单击对应实例操作列的“停止”。 在PyCharm菜单栏中,选择“ModelArts
4,执行如下命令使用官方权重推理。 bash sample_video_65.sh 使用训练生成的权重文件推理 在Step7 启动训练服务完成后,会在工作目录/home/ma-user/Open-Sora-Plan1.0/下自动生成一个t2v-f17-256-img4-videovae488-bf16
在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 上传OBS的文件规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的音频,请创建一个空文件夹,然后将音频文件保存在该文件夹下
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。
-learning”也请替换为自定义的值。 选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。
的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for
“数据集输入位置”:AI Gallery的数据集下载到OBS的路径,此位置会作为数据集的数据存储路径,数据集输入位置不能和输出位置相同。 “名称”默认生成“data-xxxx”形式的数据集名称,该数据集将同步在ModelArts数据集列表中。 “描述”可以添加对于该数据集的相关描述。 图2 下载数据集(至ModelArts)
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。经常不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的
refix Cache和Generated KV Cache都可以缓存,在多轮对话的应用中,忽略边界情况,基本上可以认为其消除了历史轮次中生成对话的recompute。 Ascend vllm提供prefix caching关键特性能力,能够显著降低长system prompt和
指定对应Dump数据目录后进行比对分析。 msprobe -f pytorch compare -i ./compare.json -o ./output -s 生成CSV分析表格之后进行分析,该问题第一个偏差来源如下: Tensor.__getitem__.0 在forward阶段的第一个输入存在偏差,追溯输入来源发现是torch
以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。 自动高性能算子生成工具AKG AKG(Auto Kernel Generator)对深度神经网络中的算子进行优化,并提供特定模式下的算子自动融合功能。提升在昇腾硬件后端上运行网络的性能。
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for
的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录