检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true
步骤四:启动容器 启动容器镜像前请先按照参数说明修改${}中的参数。docker启动失败会有对应的error提示,启动成功会有对应的docker id生成,并且不会报错。 docker run -itd --privileged \ --device=/dev/davinci0 \ --device=/dev/davinci1
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
RestartJob plugins: configmap1980: - --rank-table-version=v2 # 保持不动,生成v2版本ranktablefile env: [] svc: - --publish-not-ready-addresses=true
SD1.5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904) Stable Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
ModelArts Standard推理服务访问公网方案 本章节提供了推理服务访问公网的方法。 应用场景 推理服务访问公网地址的场景,如: 输入图片,先进行公网OCR服务调用,然后进行NLP处理; 进行公网文件下载,然后进行分析; 分析结果回调给公网服务终端。 方案设计 从推理服
CLI配置工具。 gallery-cli login 显示如下信息表示登录成功。“/test”是自定义的服务器的缓存目录,token是系统自动生成的文件夹。 /test/token 登出Gallery CLI配置工具 上传或下载AI Gallery仓库的资产完成后,登出Gallery
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAI
${maxPrefillTokens},|g' config.json && \ sed -i 's|\"httpsEnabled\" : .*|\"httpsEnabled\" : ${httpsEnabled},|g' config.json && \ sed -i 's|\"m
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
total_metric_values属性列表 参数 参数类型 说明 f1_score Float 训练作业模型总召回。仅限部分预置算法使用,会自动生成,仅供参考。 recall Float 训练作业模型总召回率。 precision Float 训练作业模型总精确率。 accuracy Float
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小
fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化
ate列 output_dir /home/ma-user/ws/Qwen2-72B/sft-4096 必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小