检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
Kubernetes的临时存储卷,临时卷会遵从Pod的生命周期,与Pod一起创建和删除。 使用临时存储路径 HostPath 适用于以下场景: 容器工作负载程序生成的日志文件需要永久保存。 需要访问宿主机上Docker引擎内部数据结构的容器工作负载。 节点存储。多个容器可能会共享这一个存储,会存在写冲突的问题。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何创建AI应用,部署模型并启动推理服务,在线预测服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
数据集版本文件目录结构 由于数据集是基于OBS目录管理的,发布为新版本后,对应的数据集输出位置,也将基于新版本生成目录。 以图像分类为例,数据集发布后,对应OBS路径下生成,其相关文件的目录如下所示。 |-- user-specified-output-path |-- D
4,执行如下命令使用官方权重推理。 bash sample_video_65.sh 使用训练生成的权重文件推理 在Step7 启动训练服务完成后,会在工作目录/home/ma-user/Open-Sora-Plan1.0/下自动生成一个t2v-f17-256-img4-videovae488-bf16
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py #
在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 上传OBS的文件规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的音频,请创建一个空文件夹,然后将音频文件保存在该文件夹下
Job>Stop”,或者直接在网页端单击终止。 图30 终止训练作业 步骤5:清除相应资源 为避免产生不必要的费用,在完成试用后,建议您删除相关资源,如在线服务、训练作业及其OBS目录。 停止Notebook:在“Notebook”页面,单击对应实例操作列的“停止”。 在PyCharm菜单栏中,选择“ModelArts
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。经常不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的
以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。 自动高性能算子生成工具AKG AKG(Auto Kernel Generator)对深度神经网络中的算子进行优化,并提供特定模式下的算子自动融合功能。提升在昇腾硬件后端上运行网络的性能。
桶的目录结构如下。 <bucket_name> |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录
的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for
的“子目录挂载” 图3 选择SFS Turbo 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 提交训练作业,训练完成后,生成的权重文件自动保存在SFS Turbo中,保存路径为:/home/ma-user/work/llm_train/saved_dir_for