检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
默认的输入字段分隔符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分隔符,则以此处的默认分隔符为准。 , - loader.input.line.separator 默认的输入行分隔符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分隔符,则以此处的默认分隔符为准。
默认的输入字段分割符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分割符,则以此处的默认分割符为准。 , - loader.input.line.separator 默认的输入行分割符,需要配置输入与输出转换步骤才生效,转换步骤的内容可以为空;如果作业的转换步骤中没有配置分割符,则以此处的默认分割符为准。
出现这种情况是因为HiveSyncTool目前只支持很少的兼容数据类型转换。进行任何其他不兼容的更改都会引发此异常。 请检查相关字段的数据类型演进,并验证它是否确实可以被视为根据Hudi代码库的有效数据类型转换。 父主题: Hive同步
出现这种情况是因为HiveSyncTool目前只支持很少的兼容数据类型转换。进行任何其他不兼容的更改都会引发此异常。 请检查相关字段的数据类型演进,并验证它是否确实可以被视为根据Hudi代码库的有效数据类型转换。 父主题: Hudi常见问题
查看MRS作业详情和日志 用户通过管理控制台可在线查看当前MRS集群内所有作业的状态详情,以及作业的详细配置信息和运行日志信息。 由于Spark SQL和Distcp作业在后台无日志,因此运行中的Spark SQL和Distcp作业不能在线查看运行日志信息。 查看作业状态 登录MRS管理控制台。
BulkLoad同步数据类型数据到HBase表中时,存在以下限制: 数据类型转换的对应关系请参见表1。日期类型会被先转换为String类型,再存储到HBase中; 数字类型、字符串类型、布尔类型均会直接转为byte数组存储到HBase中,解析数据时,请将byte数组直接转换为对应类型,同时需要注意判断空值。 不建议
Impala开发建议 Impala SQL编写之不支持隐式类型转换 查询语句使用字段的值做过滤时,不支持使用Hive类似的隐式类型转换来编写Impala SQL: Impala示例: select * from default.tbl_src where id = 10001; select
Impala开发建议 Impala SQL编写之不支持隐式类型转换 查询语句使用字段的值做过滤时,不支持使用Hive类似的隐式类型转换来编写Impala SQL: Impala示例: select * from default.tbl_src where id = 10001; select
存中,在多次计算间重用。 RDD的生成: 从HDFS输入创建,或从与Hadoop兼容的其他存储系统中输入创建。 从父RDD转换得到新RDD。 从数据集合转换而来,通过编码实现。 RDD的存储: 用户可以选择不同的存储级别缓存RDD以便重用(RDD有11种存储级别)。 当前RDD默
0版本开始提供了一套API可以将使用Storm API编写的业务平滑迁移到Flink平台上,只需要极少的改动即可完成。通过这项转换可以覆盖大部分的业务场景。 Flink支持两种方式的业务迁移: 完整迁移Storm业务:转换并运行完整的由Storm API开发的Storm拓扑。 嵌入式迁移Storm业务:在Flin
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HiveQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。
HetuEngine SQL诊断功能介绍 HetuEngine QAS实例可对用户的SQL执行历史记录提供自动感知、自动学习、自动诊断服务,提升在线SQL运维能力,自动加速在线SQL分析任务,开启SQL诊断能力后,系统可实现如下能力: 自动感知并向集群管理员展现不同时间周期范围内的租户级、用户级的S
Hive应用开发建议 HQL编写之隐式类型转换 查询语句使用字段的值做过滤时,不建议通过Hive自身的隐式类型转换来编写HQL。因为隐式类型转换不利于代码的阅读和移植。 建议示例: select * from default.tbl_src where id = 10001; select
完整迁移Storm业务 操作场景 该任务指导用户通过Storm业务完整迁移的方式转换并运行完整的由Storm API开发的Storm拓扑。 操作步骤 打开Storm业务工程,修改工程的pom文件,增加“flink-storm” 、“flink-core”和“flink-streaming-java_2