检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
识别并对文本中电话号码、邮箱、身份证等信息进行脱敏。 敏感词过滤 识别并过滤文本中包含的涉黄、涉暴、涉政等敏感词。 通用清洗 正则替换 基于给定的正则表达式,进行文本替换。 正则过滤 基于给定的正则表达式,进行文本过滤。 数据读取 单栏文字版PDF文档读取 解析PDF文档。数据集文件类型为PDF时显示。 word文本读取
用户可以通过API调用盘古大模型服务的基模型以及用户训练后的模型。训练后的模型只有在使用“在线部署”功能时,才可以使用本章节提供的方法进行调用。本章节将介绍如何使用Postman调用API,仅供测试使用。 前提条件 使用API调用模型前,请先完成盘古大模型服务订购和开通操作。 使用Postman调用API
用户可以通过API调用盘古大模型服务提供的基模型以及用户训练后的模型。训练后的模型需使用“在线部署”,才可以使用本章节提供的方法进行调用。本章节分别介绍使用Postman调用API和多语言(Java/Python/Go)调用API的方法,仅供测试使用。 前提条件 使用API调用模型前,需要先开通盘古大模型服务。
一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,
训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。
部署为在线服务 模型训练完成后,即模型处于“已完成”状态时,可以启动模型的部署操作。 基于盘古大模型打造的专业大模型包括BI专业大模型与单场景大模型支持模型推理,但不支持模型训练。 部署为在线服务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“部署”。
来源一:互联网开源数据集,如政府网站网页、政府在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于具体场景和项目需求,收集相关的文本数据。比如通过与当地政府的政数局进行合作,获取政府部门提供的内部脱敏数据等。相关的数据格式包括但不限于:在线网页、离线word文档、离线txt文件
型能力的入口。用户可以通过在“能力调测”页面选择调用基模型或训练后的模型。 训练后的模型需要“在线部署”且状态为“运行中”时,才可以使用本章节提供的方法进行调测,具体步骤请参见部署为在线服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让
逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定。当用户向AI助手提
为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ -
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
@huaweicloud/huaweicloud-sdk-core npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explor
打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可
补说明 对任务进行补充说明,如补充任务要求、规范输出的格式等。将想要的逻辑梳理表达出来,会让生成效果更加符合预期。说明需要逻辑清晰、无歧义。 设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。每个要求步骤之间最好换行(\n)分
部署盘古大模型 部署为在线服务 部署为边缘服务
时,模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领域中表现出色,
盘古-NLP-N1系列模型支持128K外推。 公测 模型的基础信息 2 模型部署相关 盘古-NLP-N2-基础功能模型-32K模型,LoRA微调后支持4K部署。 公测 部署为在线服务
开发,提供全生命周期工具链,帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地
创建有监督训练任务 创建有监督微调训练任务 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 图1 模型训练列表 在训练配置中,选择模型类型、训练类型、训练方式、训练模型与训练参数。 其中,训练配置选择LLM(大语言模型),
文本补全 功能介绍 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。它可以用来做文本生成、自动写作、代码补全等任务。 URI POST /v1/{project_id}/deployments/{deployment_id}/text/completions 表1