检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json文件中配置。当业务可提供正常服务时,健康检查接口返回健康状态,否则返回异常状态。 如果要实现无损滚动升级,必须配置健康检查接口。 自定义镜像如果需要在“在线服务”模块使用OBS外部存储挂载功能,需要新建一个OBS挂载专属目录如“/obs-mount/”,避免选择存量目录覆盖已有文件。OBS挂载
shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore Lite pipeline输出的结果图片 父主题: 应用迁移
print(outputs[0].outputs[0].text) MODEL_NAME表示对应模型路径。 在线推理使用Guided Decoding 启动推理服务请参考启动推理服务章节。 在线推理使用Guided Decoding时,在发送的请求中包含上述guided_json架构,具体示例可参考以下代码。
Notebook”,单击“创建”,在创建Notebook页面,资源池规格只能选择专属资源池。 使用子账号用户登录ModelArts控制台,选择“模型部署 > 在线服务”,单击“部署”,在部署服务页面,资源池规格只能选择专属资源池。 父主题: 典型场景配置实践
PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可以
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
步骤二:权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
异常。 图像分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
提供交互式云上开发环境,包含标准化昇腾算力资源和完整的迁移工具链,帮助用户完成昇腾迁移的调测过程,进一步可在平台上将迁移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转
CodeLab内置了免费算力,包含CPU和GPU两种。您可以使用免费规格,端到端体验ModelArts Notebook能力。也可使用此免费算力,在线完成您的算法开发。 即开即用 无需创建Notebook实例,打开即可编码。 高效分享 ModelArts在AI Gallery中提供的Notebook样例,可以直接通过Run
选择步骤3构建的镜像。 图3 创建模型 将创建的模型部署为在线服务,大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 图4 部署为在线服务 调用在线服务进行大模型推理,请求路径填写/v2/models/en
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
l_limit的值一致。 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
# prints: [[1., 0., 0.]] 运行推理脚本。 python inference.py 由于./docs/CLIP.png图片是一张图表,因此结果值和第一个文本"a diagram"吻合,结果值会接近[[1., 0., 0.]]。 Step8 精度评估 关闭数据集shuffle,保证训练数据一致。
异常。 物体检测:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
异常。 文本分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
异常。 声音分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
data_sources 是 Array of DataSource objects 数据集输入位置,用于将此目录及子目录下的源数据(如图片/文件/音频等)同步到数据集。对于表格数据集,该参数为导入目录。表格数据集的工作目录不支持为KMS加密桶下的OBS路径。目前仅支持传入单个DataSource。