检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集
的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
cision_compare_details_{timestamp}.csv文件的API详细达标情况。 详细工具的使用指导请参考离线预检和在线预检介绍。 父主题: msprobe工具使用指导
shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore Lite pipeline输出的结果图片 父主题: 应用迁移
PyTorch、TensorFlow和MindSpore等引擎的AI模型。 支持通过JupyterLab工具在线打开Notebook,具体请参见通过JupyterLab在线使用Notebook实例进行AI开发。 支持本地IDE的方式开发模型,通过开启SSH连接,用户本地IDE可以
l_limit的值一致。 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时清空输出目录。“fals
步骤二:权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Notebook”,单击“创建”,在创建Notebook页面,资源池规格只能选择专属资源池。 使用子账号用户登录ModelArts控制台,选择“模型部署 > 在线服务”,单击“部署”,在部署服务页面,资源池规格只能选择专属资源池。 父主题: 典型场景配置实践
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
在/home/ma-user/Open-Sora-Plan1.0/目录下进行操作 训练至少需要单机8卡。 命令启动训练脚本。 例如:训练65帧的视频,拼接4张图片,则执行如下命令: bash train_videoae_65x512x512.sh 正常训练过程如下图所示。训练完成后,关注loss值,
色的。 code_type:预训练json文件编码,默认utf-8。 当转换为sharegpt格式时,prefix和input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 设置环境变量。
色的。 code_type:预训练json文件编码,默认utf-8。 当转换为sharegpt格式时,prefix和input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 设置环境变量。
色的。 code_type:预训练json文件编码,默认utf-8。 当转换为sharegpt格式时,prefix和input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集 设置环境变量。
提供交互式云上开发环境,包含标准化昇腾算力资源和完整的迁移工具链,帮助用户完成昇腾迁移的调测过程,进一步可在平台上将迁移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转
CodeLab内置了免费算力,包含CPU和GPU两种。您可以使用免费规格,端到端体验ModelArts Notebook能力。也可使用此免费算力,在线完成您的算法开发。 即开即用 无需创建Notebook实例,打开即可编码。 高效分享 ModelArts在AI Gallery中提供的Notebook样例,可以直接通过Run
选择步骤3构建的镜像。 图3 创建模型 将创建的模型部署为在线服务,大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 图4 部署为在线服务 调用在线服务进行大模型推理,请求路径填写/v2/models/en
平均可以生成3个有效token,即用1.5倍的时间代价,生成了3倍的token数量,性能提升了100%。 投机推理参数设置 在启动离线或在线推理服务时参考表1所示配置参数,使用投机推理功能。 表1 投机推理相关参数 服务启动方式 配置项 取值类型 配置说明 offline speculative_model
om格式的模型转换能力,在ModelArts中逐步增加.mindir格式的支持能力。 下线模型转换后是否有替代功能? 您可以通过链接下载ATC模型转换工具,按照指导,在线下转换成.om格式模型。 ModelArts中是否还会增加模型转换的能力? ModelArts开发环境中在贵阳一Region,支持将ONNX或PyTorch模型转换到