检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
i.com不通过公网代理,huaweicloud.com域名在no_proxy/NO_PROXY中包含,就访问不了。 解决方式 执行以下命令查看在no_proxy/NO_PROXY中是否包含huaweicloud.com域名。 env | grep -i no_proxy 如果包
install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
通过API接口选择自定义镜像导入创建模型,配置了运行时依赖,没有正常安装pip依赖包。 原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。 # 配置华为云的源,安装
name/obs_file.txt",path="/home/user/obs_file.txt") 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
上传dockerfile文件和模型包文件 打开Terminal终端,解压model.zip,解压后删除zip文件。 #解压命令 unzip model.zip 图3 在Terminal终端中解压model.zip 打开一个新的.ipynb文件,启动构建脚本,在构建脚本中指定dockerfile文件和
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。 如果机器与容器镜像仓库不在同一区域,则上传镜像走公网链路,机器需要绑定弹性公网IP。 约束与限制 使用客户端上传镜像,镜像的每个layer大小不能大于10G。 上传镜像的容器引擎客户端版本必须为1.11.2及以上。 操作步骤
服务当前运行所用配置的更新时间,距“1970.1.1 0:0:0 UTC”的毫秒数。 debug_url String 在线服务在线调试地址,只有当模型支持在线调试且只有一个实例的时候会存在。 due_time Number 在线服务自动停止时间,距“1970.1.1 0:0:0 UTC”的毫秒数,未配置自动停止则不返回。
GPU裸金属服务器无法Ping通如何解决 问题现象 在华为云使用GPU裸金属服务器时, 服务器绑定EIP(华为云弹性IP服务)后,出现无法ping通弹性公网IP现象。 原因分析 查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
在开发环境中创建TensorBoard可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动TensorBoard Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间 > Note
迁移效果校验 在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite
填写参数(1) 系统运行架构: 选择ARM. 推理加速卡:无。 部署类型: 在线服务。 请求模式:同步请求。 启动命令: source /etc/bashrc && python3 launch.py --skip-torch-cuda-test --port 8183 --enabl
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 cd ./llm_train/AscendSpeed 编辑llm_tr
以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
907-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce